
TRANSPORT STUDIES OF
ONE DIMENSIONAL

ORGANIC CONDUCTORS

by

Kell Mortensen

DTU December 1979

PhD (Lic.Techn) Thesis. 
Supervisor, Professor Niels I. Meyer
Co-supervisor, Dr. Claus S. Jacobsen



TRANSPORT STUDIES OF 

ONE DIMENSIONAL 

ORGANIC CONDUCTORS 

by 

Kell Mortensen 

December 1979 



'' 

PREFACE 

The present thesis is written for partiel fulfilment of the con­

ditions for obtaining the Technical Licentiate Degree (corres­

ponding to Ph.D.). The subject of the work has been studies of 

highly conducting organic single crystals. The licentiate study 

was performed at Physics Laboratory III, The Technical Univer­

sity of Denmark, in the period from February 1977 to December 

1979. 

Organic conductors has been the subject of great international 

activity during the last decade. One of the most interesting 

discussions going on in the period of time, while I made this 

thesis work, was concentrated on the attempt to understand 

the conduction mechanism in these new synthetic materials. In 

the present report, I have given special attention to the con­

ductivity and thermoelectric power. The latter parameter has 

been studied experimentally in a number of compounds. Numerical 

calculations have been done, assuming electron scattering due 

to interaction with phonons. 
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ABSTRACT 

Studies of transport properties of single crystals of quasi-one­

dimensional organic conductors are presented. In particular, 

the DC-conductivity and the thermoelectric power are treated. 

Measurements of the temperature dependent thermopower between 4 

and 300 K are given for a number of derivatives of the proto­

type TTF-TCNQ. For the highly conducting compounds, the thermo­

power has a linear temperature dependence, indicative of cohe­

rent conduction. From the slope of S versus T, the bandwidth 

and charge transfer has been evaluated. For compounds of smal­

ler conductivity, the thermopower results indicate diffusive 

conduction to occur. Below the phase-transition, the data in­

dicate dominance of impurities. The phase-transition tempera­

tures are clearly marked by anomalies in the S versus T curves. 

Numerical calculations of the transport coefficients are pre­

sented for TTF-TCNQ, assuming single particle behaviour. The 

electron scattering is calculated for first and second order 

coupling to intermolecular modes, and for first order coupling 

to intramolecular modes. 



TABLE OF CONTENT 

page 

I INTRODUCTION 1 

1.1 Physics of One-Dimensional Systems 2 

1. 2 Organic Charge Transfer Salts, e.g. TTF-TCNQ 6 

1. 3 The Metallic State of TTF-TCNQ 7 

1.4 Scope of the Present Work 11 

II QUASI-ONE-DIMENSIONAL TIGHT BINDING BAND MODEL 12 

2.1 One-Dimensional Tight Binding Model 12 

2.2 Periodic Modulation of the Transfer Integral 15 

2.3 Including Inter-Chain Coupling 17 

III TRANSPORT COEFFICIENT IN ONE-DIMENSIONAL METALS 22 

3.1 The Boltzmann Equation 22 

3.2 General Transport Coefficients 23 

3.3 Bethe-Sommerfeld Expansion of Transport-Integrals 28 

3.4 Two Conduction Bands 30 

3.5 Multiple Scattering Processes 32 

3.6 Transport Parameters in One-Dimensional Tight 

Binding Band 34 

IV SCATTERING MECHANISM IN ORGANIC METALS 39 

4.1 Electron-Phonon Interaction in TTF-TCNQ 40 

4.2 Electron Coupling to External Modes 41 

4.3 One-Phonon Hamiltonian 42 

4.4 First-Order Scattering by Acoustic Modes 46 

4.5 Two-Phonon Hamiltonian 52 

4.6 Transport Properties for Second-Order Electron-

Phonon Scattering 

4.7 Coupling to Internal Modes 

56 

59 

4.8 Scattering by All First Order Electron-Phonon 

Interaction 

4.9 Electron-Electron Interaction 

4.10 Influence of Lattice Defects and Impurities 

V PHONON DRAG 

5.1 Resistivity 

5.2 Thermopower 

73 

76 

78 

84 

34 

86 



VI TRANSPORT PROPERTIES IN THE NON-METALLIC REGIME 91 

6.1 Conductivity 93 

6.2 Thermopower 94 

VII TECHNIQUE USED FOR THERMOPOWER MEASUREMENTS 104 

VIII THERMOPOWER MEASUREMENTS ON ORGANIC CHARGE 

TRANSFER SALTS 114 

8.1 Thermopower of TTF-TCNQ 114 

8.2 Thermopower of some Alkylated derivatives of TTF- 121 

TCNQ and TSF-TCNQ: 'IMTSF-TCNQ, DEDMTSF-TCNQ, 

TMTTF~DMTCNQ, TMTSF-DMTCNQ and TMTSF-DMTCNQ-MTCNQ 

8.3 Decomposition of Transport Parameters in 

TMTSF-DMTCNQ and TMTTF-DMTCNQ 

8.4 Thermopower of the Salts (TMTSF) 2x, X = PF 6 , 

AsF 6 , SbF 6 , N0 3 , BF 4 , derived from Tetramethyltetra-

135 

selenafulvalene (TMTSF) 140 

8.5 Thermopower of (TMTTF) 2PF 6 148 

8.6 Thermopower of HMTSF-TNAP 150 

8.7 Thermopower of TTTF-TCNQ and METTF-TCNQ 155 

8.8 Thermopower of DBTTF-TCNQC12 156 

IX SUMMARY AND CONCLUSION 162 



- 1 -

CHAPTER I 

INTRODUCTION 

In the last decade there has been a large amount of interest 

in metallic systems that exhibit quasi-one-dimensional electro­

nic properties. Work on lD conductors has been the subject of 

several proceedings of conferences 11-sl and sununer schools 

16-91, and there have been several reviews in the field 110-151. 

The crystals themselves are, of course, three dimensional, but 

the microscopic structure consists, to a greater or lesser ex­

tent, of a collection of weakly coupled, highly conducting 

chains. 

One dimensional metals are of interest because they are expect­

ed to exhibit unusual physical properties. One example is the 

occurence of an intrinsic instability towards the formation of 

a periodic lattice distortion, the Peierls instability llBI. 

An interesting aspect of the Peierls distortion is that the 

superlattice wavevector is determined by the details of the 

Fermi surface and may bear no simple relation to the lattice 

periodicity. When the distortion in that way is incommensurate 

with the lattice, there is no prefered spatial location for the 

distortion, and hence the phase is free to move through the 

solid. Further, since the lattice is coupled to the charge den­

sity, the periodic lattice distortion is equivalent with a char­

ge density wave (CDW). Thus the collective motion can carry a 

current, the sliding CDW. This is the mechanism of Frohlich 

superconductivity 1221. When the distortion on the other hand 

is corrunensurate with the underlying lattice, it will have a pre­

ferred position and is unable to move without surmounting an 

energy barrier. The CDW is said to be pinned. The material is 

then insulating or semiconducting. Besides commensurability 

with the lattice, impurities and defects can also pin the CDW. 

Another, and probably the most important reason for the intense 

studies of quasi-one-dimensional conductors is that it to a cer­

tain extent is possible for the chemists to synthesize lD ma­

terials with desired physical properties. 

A number of materials exhibiting quasi-one-dimensional proper­

ties have in the past decade been discovered. One class of com-
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pounds is the mixed valence platinum complexes of cyanide or 

oxalate, including the well known salt K2Pt(CN) 4Br0 • 3 . 3H2o, 
usually abbreviated to KCP. The planar arrangement of cyanide 

anions around the Pt cation allows regular stacking and overlap 

between the atomic platinum orbitals on adjacent ions, thus 

forming metallic b nds along the stacking a.xis. Another impor­

tant group of materials discovered in the recent years is the 

polymers of sulphur-nitrogen (SN)x 1 and of doped polyacetylene 

(CH)x. Prob?bly the most completely studied group of quasi lD 

compounds is the organic conductors consisting of various char­

ge transfer salts. The conduction bands in these organic metals 

are derived from overlap between n electron orbitals of the 

planar molecules stacked one on top of another. The subject 

of this thesis is different compounds of this class of quasi 

lD materials, all derivatives of the prototype tetrathioful­

valene-tetracyanoquinodimethanide (TTF-TCNQ). 

1.1 PHYSICS OF ONE-DIMENSIONAL SYSTEMS 

If we consider a system that contains an electron gas in equi­

librium and we then slightly change the potential which the 

electrons experience, the result will be a change in the elec­

tron density. This density change is usually described by a 

response function x, giving the proportionality between the 

amplitude of the charge density change (op), and the poten­

tial change (v) : 

op = -x • v ( 1.1) 

Thus the total energy change for the electron system as a re­

sult of the potential v, is 

oe: = -~x • 2 v (1. 2) 

Generally, the linear equations (1.1) and (l.2)are only valid 

for simple harmonic oscillating potentials. Therefore, Fourier 

transformation is always necessary. Then taking the q-component 

of a given lattice potential 
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v(q) = vq cos qr (1. 3) 

one can derive the response function by using second order pertur­

bation theory 1231. The result takes the form 

(1.4) 

which is known as the Lindhard-function. The sum in (1.4) is over 

the different values of the wave vectors k for the Bloch states. 

f (k) is the Fermi-Dirac distribution function and Ek is the energy 

of the electron with momentum nk. 

Now consider the situation where the potential vq is derived from 

displacement uq of phonon mode q coupled to the electron system 

through the Hamiltonian (see Chapter IV): 

H = ep 
-~ + 

N E E g ck+q ck (a + a+q> 
q k q q 

(1.5) 

c~(ck) and a~(aq) are the fermion and boson creation (annihilation) 

operators, respectively, and g is a coupling parameter. In this 
q 

case, I 14 I 

vq = g u l2Mw /nl~ q q q ( 1. 6) 

where M is the ionic mass and w is the frequency of the phonon q. 
q 

If the decrease of energy in the electron system, eq. (1.2), due to 

a periodic lattice distortion is larger than the elastic energy 

in the phonon mode q, given by 

E 
q 

2 
= ~M (w u ) q q ( 1. 7) 

the ground state of the coupled electron-phonon system has a finite, 

static amplitude in the phonon mode q. Using equations (1.2), (1.6) 
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and (1.7), the instability criterion becomes 

(1. 8) 

This is the basic condition for a state characterized by a pe­

riodic lattice distortion of wavevector q. Besides the coupling 

parameter g , the susceptibility, x , is a crucial function. 
q q 

Large values of x arise for systems where, at a particular 
q 

value of q, there are many occupied electron-states separated 

from many unoccupied states by q for which the denominator in 

(1.4) is close to zero. This corresponds to coupling across 

the Fermi surface. 

In the case of a three dimensional free electron gas, there 

are only two degenerate states connected by the q-mode (see 

Fig. 1.1). In a one dimensional metal, on the other hand, the 

Fermi surface consists of planes at -kF and +kF. Thus the num­

ber of states coupled by the q=2kF mode diverge. Now the Fermi 

surface is only sharp at o°K, and taking thermal smearing into 

account, one will get the temperature dependence 1241 

(1.9) 

where N(eF) is the density of states at the Fermi level £F' 

and kB is the Boltzmann constant. From (1.9) it appears that 

the static lattice distortion only occurs below some characte­

ristic temperature T . p 

In a regular lattice, a displacement of the ions is opposed by 

elastic forces that holds the ions in place. The presence of 

a periodic lattice distortion will, however, produce an addi­

tional force on the ions via the charge density change, and 

thereby modify the phonon frequency to 1251 

0 2 2 0 ~ 
= wq [l - gq Xq(T)/nwq] ( 1. 10) 

w~ being the undressed frequency. Hence for a one-dimensional 

metal, the frequency of the q=2kF mode decreases and goes to 

zero for some low temperature. This behaviour, known as the 

Peierls instability is illustrated in Fig. 1.2. 
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k 

Fig. 1.1. The Fermi surface 
of a free electron gas. a 
For three dimensions and-b 
for one dimension. For a 
given perturbation of wave 
vector q, only two equal 
energy states on the FS are 
coupled in 3D, whereas a set 
of planes of degenerate sta­
tes are coupled in lD. 

Fig. 1.2 Developement of giant 
Kohn anomaly in acoustic pho­
non branch. 

Fig. 1.3 Peierls gap in the 
energy band at the Fermi 
level. 
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In the structural aspects, the Peierls instability is expected 

to give rise to the following behaviour: At low temperature 

the static distortion will cause a well defined three dimensional 

superlattice. At higher temperatures the transverse order may be 

lost due to thermal disorder. This is the region of the giant 

Kohn anomaly due to Peierls fluctuations. At.still higher tem­

peratures the superlattice will gradually disappear, as the peak 

in the Lindhard function becomes less pronounced. 

The low temperature 3D superlattice will cause a gap in the 

electronic energy spectrum at the Fermi level, the Peierls gap, 

thus leaving the material as a semiconductor. Above the 3D-1D 

transition temperature, the phase of the lattice distortion is 

pinned only by properties of the single chain. If the CDW is . 

incommensurate with the primitive lattice, there is no preferred 

position. The phase is then free to move through the material. 

This Frohlich mode can clearly carry a current. In a real system 

the phase will tend to be fixed by impurities, lattice defects 

or by interchain coupling. Also when the superlattice period is 

a multiplum (n) of the primitice lattice constant, i.e. is com-

mensurate with the lattice, the CDW will have a prefered posi-

tion. The CDW is then unable to move without surmounting an 

energy barrier, E . . , dependent of the order of commensura­pinning 
bili ty (n) I I 26 I 

(1.11) 

where E is the Peierls gap and W is the electronic bandwidth. g -

1.2 ORGANIC CHARGE TRANSFER SALTS, e.g. TTF-TCNQ 

TTF-TCNQ is a charge-transfer complex formed from the almost pla­

nar TTF radical cation and TCNQ radical anion. The amount of 

charge transfer is 0.59 1211. The highest occupied electronic 

states of these molecules are n-MO's, which means that the wave 

functions are extended in the direction perpendicular to the 

plane of the molecule (Fig. 1.5) 1281. The TTF and TCNQ molecules 

are in the crystalline structure (Fig. 1.6) arranged in segre-
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gated stacks along the b-axis. Thereby they form a rather large 

overlap between the TI-orbitals of adjacent molecules in the 

stacking direction, whereas the interstack overlap is rather 

small. Thus the material is highly anisotropic and does in fact 

exhibit many characteristics of one dimensional systems, e.g. 

the Peierls instability 1271. TTF-TCNQ is therefore usually desig­

nated quasi-one dimensional. 

All other organic metals that have been prepared have in the 

same way conduction bands derived from the overlap between TI 

electron orbitals. In some cases the molecules used are simple 

derivatives of the TTF or TCNQ molecules, e.g. the alkylated 

compounds I 29 I which will be discussed in chapter VIII. In 

other cases one radical is replaced by another organic mole­

cule, e.g. NMP-TCNQ l30I, or by an inorganic molecule, e.g. 

(TMTSF) 2-PF6 1311 which also will be discussed below. In the 

latter compound the acceptor molecules do not take part in the 

formation of conduction bands. 

1.3 THE METALLIC STATE OF TTF-TCNQ 

Among the immediate reasons for the extended resea.rch activi­

ties in the field of quasi-one-dimensional conductors was the 

report of a giant conductivity peak in TTF-TCNQ 1321. This 

large conductivity originally was proposed to be a result of 

fluctuations toward a superconducting state. Coleman et al. 

1321 ascribed the state to be of the BCS-type, whereas Bardeen 

1331 marked that the fluctuations rather were toward the Peierls-

Frohlich state. Since then, more detailed calculations have been 

attempted in order to explain the conductivity enhancement. 

Allender et al. I 34 I used mean field theory to explain the 

transition into an insulating state as a result of the charge 

density waves being pinned to the crystal lattice. However, 

their theory was unable to account for the observed magnitude 

of the conductivity enhancement. Anderson et al. l35I remarked 

that the observed magnitude required a mean field temperature 

of several hundreds degrees rather than the 60K used by Allen­

der et al., Lee, Rice and Anderson 1261 thereafter proposed 

a detailed Ginzberg-Landau model for the metal-insulator 
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Fig. 1.4 Molecular 
constituents of 
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Fig. 1.5 Overlap of 
TI-orbitals on adja­
cent (TCNQ-) mole­
cules, forming con­
duction bands. 
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Fig. 1.6 Structure 
of TTF-TCNQ, showing 
a herring-bone stack­
ing. 
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Fig. 1.7 Normalized 
b-axis conductivity 
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transition, which was attributed to three-dimensional ordering 

of the CDW. The giant conductivity was supposed to arise from 

sliding CDWs, which could also account for the strongly fre­

quency dependent conductivity and the falloff in the IR range 

1361. Support for the model of collective transport in TTF-TCNQ 

is given by the diffuse X-ray scattering 1271, showing fluc­

tuations into an incommensurate CDW in the temperature range 

58K < T < 150K. However, the recent experiments by Andrieux 

et al. 11531 are probably the best evidence of the fluctuating 

collective mode. By using high pressure, Andrieux et al. were 

able to achieve 3:1 commensurability of the periodic distortion 

with the lattice. The associated commensurability pinning did 

in fact cause a substantial drop in conductivity. 

Nevertheless, there is still considerably scepticism concerning 

collective transport in TTF-TCNQ, and many attempts are made 

to reconcile the experimental data with single particle theory. 

In contrast to the conductivity, a varity of other transport 

phenomena appear to be consistent with an independent-particle 

picture. For example, the thermal conductivity (Fig. 1.9) fol­

lows approximately the Wiedeman-Franz law 1371. Using the free 

electron Lorenz number, the decrease in thermal conductivity 

at 55K yields an electrical conductivity some 25 times the 

room-temperature value, in fairly good agreement with the T- 2 · 3 

-law noted empirically l3BI. The thermopower (Fig. 1.8) as well 

is in accordance with a single-particle theory 1391. The high 

-temperature value is typical for a metallic system, so is the 

linear temperature dependence. If superconducting fluctuations 

were essential, we would expect a rather reduced absolute value. 

DC-Hall effect measurements also confirm single particle 

conductivity, as ~ ~ l/ne, where n is the concentration of 

electrons per molecule on the TCNQ chain 1401. 
However, both the thermopower and Hall effect reveal deviations 

from the simple metallic behaviour below 150K. These deviations 

could be due to some collective transport mechanism. Thus we 

believe that the transport in TTF-TCNQ should be divided into 

three regions: Above 150K, TTF-TCNQ is a simple lD metal con­

taining independent carriers. In the region 54K < T < 150K, both 

single particle motion and collective fluctuations may take part 
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in the electrical transport, but the degree of collective to 

single particle motion is rather dependent of the crystal qua­

lity. Below 54K, TTF-TCNQ is a semiconductor with an activated 

number of carriers. 

1.4 SCOPE OF THE PRESENT WORK 

Conduction in one dimensional chains must be extremely sensi­

tive to imperfections, defects ,and impurities. It is therefore 

plausible that the measurement of a giant conductivity peak 

would be observed only in nearly perfect crystals. The thermo­

power, however, is a zero-current transport measurement and 

would not be limited by breaks in the chains, assuming that 

most of the temperature drop occurs across the unbroken regions. 

Hence, the TEP is one of the best experimentally determined 

intrinsic parameters. 

In the present work we discuss the thermopower and conductivity 

for some organic quasi-one-dimensional conductors. The work 

contains two parts, a theoretical and an experimental treat­

ment of the thermopower S) and the conductivity (o) for 

compounds of the family of TTF-TCNQ. The theoretical 

discussions deal with single particle transport mechanism 

only. Based on different models known from the literature, 

the metallic conductivity and thermopower have been calculated 

numerically for TTF-TCNQ, and the results are compared with ex­

perimental data. The expected transport behaviour of semicon­

ductors is treated in view and some simplified considerations 

for transport in systems dominated by strong Coulomb correla­

tion are described. In Chapter VII the technique used for TEP 

measurements is described, and in Chapter VIII the experimental 

thermopower data for a series of organic charge transfer salts 

are presented. The results are discussed on the basis of the 

preceeding theoretical calculations. In order to understand 

the transport properties, we also include the experimental 

de-conductivities !511. 
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CHAPTER II 

QUASI-ONE-DIMENSIONAL TIGHT BINDING BAND MODEL 

Before discussing the transport properties of the organic 

quasi-one-dimensional systems, it is useful to understand 

the electronic band structure that emerges from the crystal 

structure, in some more detail 128, 42-441. 

The microscopic interactions of molecules in a solid may be 

obtained from molecular orbital (MO) calculations of their 

electronic wave functions. A particular useful MO technique 

for large organic molecules is the extended Huckel Method 1281. 
By this method, MO's are constructed from linear combinations 

of atomic Slater orbitals. The solid-state analogue of the ex­

tended Hilckel method is the tight-binding approximation in 

which Bloch wave-functions, ~k' for the crystal are formed from 

linear combinations of molecular orbitals ~· 1451. 
J 

tµk (r) = ( 2 .1) 

where k is the wave vector. 

Application of the extended Hilckel Method reveals that the 

highest occupied states of large and planar organic molecules 

are n-MO's, formed from linear combinations of atomic p func-z 
tions, where z is the direction normal to the plane of the 

molecule. In the conducting organic systems, the molecules 

stack in segregated acceptor and donor colums, and the n-orbi­

tal cause a relatively large overlap in the stacking direction 

(Fig. 1.5). In terms of the transfer integrals, these overlaps 

will be denoted tF and tQ for the donor and acceptor stacks 

respectively. In the absence of any coupling between the stacks, 

we would get two independent conduction bands. 

However, in general one should also include interstack overlap, 

although they are expected to be small compared to the intra­

stack overlap. 

2.1 ONE-DIMENSIONAL TIGHT BINDING MODEL 

In the absence of any coupling between molecules beyond the 
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nearest neighbor intrastack interaction, the tight binding Ha­

miltonian is in the form 

H -t l: rcc~o)+ Q 
+ h.c.l = (ci+l,o) Q iO 

l: l (c: ) + F 
+ h .c.] -t (ci+l,o) F io J_ I 0 

+ E: l: 
Q + Q (2.2) (ci a) cia 0 io I 

+ where ci and ci are the creation and annihilation operators, 

t is the intrastack transfer integral and e: is essentially 
0 

the electron affinity of the acceptor molecule (Q) relative 

to the ionization potential of the donor (F) 1421. In order to 

calculate the electron dispersion function, equation (2.2) must 

be Fourier transformed: 

H -t l: [ (cQl ) + Q2 ikr 
+ h.c.] = ck,o e Q k,a k,a 

-t l: [ (cFl ) + F2 ikr 
+ h.c.] ck,o e F ka k,a 

+ E: l: (cQ ) + Q ( 2. 3) 
0 ka k,a ck,o 

The energy spectrum resulting from this Hamiltonian separates 

into two independent bands connected to each kind of molecular 

stack, 

(2.4a) 

( 2. 4b) 

where k is the wave number corresponding to the chain direction. 

Detailed calculations of the transfer integrals for TTF-TCNQ 

lead to a "normal" TCNQ band (tQ > 0) and an "inverted" TTF 

band (tF < 0), as shown in Fig. 2.1 1281 . The system charge 

neutrality requires that the two bands intersect at the Fermi 

momentum kF, thus kF is related to the charge transfer p, 

through 
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c 

(2. 5) 

Fig. 2.1 Schematic band 
structure for an organic 
charge transfer salt con­
taining two independent mole­
culestacks. 

The density of states for these cosine-bands is calculated to 

dN 1 N 1 2 -~ 
N(£) = dk d£/dk =TI TET{l - cos kb} (2.6) 

as dN/dk = 2Nb/n. It is often suitable to rewrite (2.6) in 

terms of the energy. If for simplification we choose the energy­

origin as £(k=O) = O, we get N(£) in the form 

(? 7 \ 
' - • • I 

where w = 4t is the bandwidth. 

The equations (2.4) lead in the reciprocal space lattice to 

constant-energy surfaces that are planar and parallel. These 

surfaces have an energy-independent area, a fact of importance 

for the transport properties. For a compound with crystal 

structure like that of TTF-TCNQ, the area of the energy-sur­

face is given by 

= 2 x 2n 
a 

16n2 

ac 
( 2. 8) 

The unit cell is here chosen to include only one of each 

molecule. Actually, this is no:t the proper Wigner-Seitz cell, 

which must include two of each molecules because of the al­

ternating tilt arrangement in the crystal structure (Fig. 1.6). 

With this comment in mind, however, it is in the transport 

calculations advantageous to use the cell leading to eq. (2.8). 
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Fig. 2.2 Fermi surface in lD metal (TTF-TCNQ) 

2.2 PERIODIC MODULATION OF THE TRANSFER INTEGRAL 

If the intrachain transfer integral is periodically modulated 

for some reason,~g. by the electronic interaction with the pho­

non system leading to the Peierls distortion, the conduction 

band will split into two or more bands. We will as an example 

make a calculation for a trimerized chain, which can be taken 

as a rough approach to the Peierls distortion in TTF-TCNQ. 

Generally, such calculations can only be done analytically 

when the modulation is conunensurate with the lattice. 

The tight binding Hamiltonian of this trimerized system is 

given by (See fig. 2.3b) 

(2.9) 

In the Fourier transformed representation, this can be written 
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Fig. 2.3 Tight binding bands of dimerized and trimerized 
chains. t = -100 meV and o = -22 meV. 
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0 t (t-8)e -i3kb 
ak 

l: + + + 0 H = (akbkck) t t bk ( 2 .10) 
k i3kb (t-8)e t 0 ck 

leading to the electron energy 

Ek= w cos[~Arccos(ucos3kb) + j2n/3], j = 1,2,3 (2.11) 

where 

w = 2{(2t2 + (t-8) 2 )/3}~ 

u = 313 t 2 <t-8)/[2t2 + <t-8> 2 ] 312 

The energy equation (2.11) corresponds to a splitting of the 

regular tight binding band into three bands separated with a 

gap of the order of 8. In Fig. 2.3 an example is shown, with 

t = -100 meV and 8 = -22 meV. We also show the result for a 

dimerized band with the same magnitude oft and 8. 

2.3 INCLUDING INTER-CHAIN COUPLING 

The interchain coupling will destroy the simple planar shape 

of the Fermi surface. The actual form depends primarily on the 

relative transfer integrals between neighbouring molecules, 

and is therefore very sensitive to the crystal structure. 

We will shortly look at the Fermi surface in a system with 

crystal structure like that of TTF-TCNQ. Conventionally, the 

nearest neighbour transfer integrals are denoted 1441 

tF F (0,1,0) = tF F (0,1,0) - tF 
1 2 2 2 (2.12a) 

tQ Q (0,1,0) = tQ Q (0,1,0) - tQ 
1 1 2 2 (2.12b) 
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t~ Q (~,-1,0) = tF Q (~,1,0) 
~l 1 2 2 

tF F (0,~,~) - t~ 
1 2 

tQ Q (O,~,~) = t~ 
1 2 

(2.12c) 

(2.12d) 

(2.12c) 

(2.12f) 

where F. and Q. denotes the molecular wave functions referring 
l. l. 

to Fig. 2.4. The transfer integral between donor and acceptor 

molecules situated in the same b-c plan along the a axis vanish 

as a result of opposite symmetry of the TTF-1461 and the TCNQ­

wave function 1471 : 

tF Q ( ~ , 0 , 0 ) = tF Q ( ~ , 0 , 0 ) ::: 0 
1 1 2 2 

( 2 .12g) 

(The finite conductivity measured in the a-direction must thus 

mainly be via the t;Q-integral). Shitzkovsky. et al. 1441 showed 

that the tight binding energy matrix resulting from these trans­

fer integrals, eq. (2.12 ), is only reducible when v = 0. In 

that case, s(k) is given by 

s(k kb,k ) = a c 

[{ c c 2 
(tF-tQ)coskbb + 2(-tF-tQ)cos(~kbb)cos(~kcc) - ~£ 0 } + 

16(t;Q)
2 

sin
2

(kbb) cos 2 (~kaa)]~ (2.13) 

where £ is the ionization potential discussed in connection 
0 

with eq. (2.2), and determines the charge transfer, as 1441 

(2.14) 

Only when the t;Q-integral further is neglected, the Fermi 

Surface will extend across the whole Brillouin Zone (Fig. 2.5). 
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Eg. (2.13) is then reduced to the two bands 

(2.15) 

both independent of ka. Including t;0 causes the FS to contract 

and should result in a rather small FS when this parameter is 

large compared to t~ and t~. A rough example is shown in Fig. 

2.6 1441. Including further the v-parameter destroys the other­

wise rather high symmetry between electron and hole surfaces. 

In addition, there is no longer overlap between the electron 

and hole surfaces, and the FS degenerates into pockets of 

electrons and holes 1441, Fig. 2.7. 

Thus, the organic charge transfer salts are very sensitive to 

the magnitude of interchain coupling. If these are not negli­

gible ·compared to the intrachain coupling, the compounds will 

be semimetallic or semiconducting rather than metallic. 

Discussing the shape of the Fermi surface for TTF-TCNQ it was 

seen that the transfer integral between chains leads to non­

planar surfaces. The integrals between alike chains (t~, t~) 
resulted in a large FS and hence a metallic density of states, 

whereas the integrals between unlike chains (t;
0

, v) caused 

a covalency gap, i.e. a vanishing density of states at the 

Fermi level. 

In compounds with structure like that of HMTSF-TCNQ, the neigh­

bours are unlike in both directions perpendicular to the stack­

ing direction 1481 . Therefore, one would expect a vanishing 

FS and a semiconducting behaviour, in contrast to experiments 

1491. A phenomenological model explaining this apparent para­

dox has been deduced by Weger 1431. The relatively short Se-N 

distance in HMTSF-TCNQ may cause the two center integrals inter­

acting with an excited state of HMTSF, and displace the TCNQ 

energy level. Rough calculations lead then to a lD metallic 
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I 
c 

Fig. 2.4 A view nor­
mal to the a-c plan 
of TTF-TCNQ. 

Fig. 2.5 Fermi surface 
for the case of tpc 

c a ' 
tQ~o and tFQ=V=O. 

Fig. 2.6 Fermi surface 
for the case of tc, 

c a . F 
tQ, tFQ~O and v=O. 

Fig. 2.7 Fermi surface 

for the case of tFc' 
c a 

tQ' tFQ' v~O. 
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high-temperature, state, and a 3D semimetallic low-temperature 

state, in good agreement with experiments. 
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CHAPTER III 

TRANSPORT COEFFICIENTS IN ONE-DIMENSIONAL METALS 

A number of experimental high-temperature properties of TTF­

TCNQ were in chapter I attributed to an independent particle 

behaviour. In connection to that we will in the present chapter 

assume that the electrical transport properties may be described 

within the framework of conventional linearized Boltzmann theory. 

3.1 THE BOLTZMANN EQUATION 1521 

The local distribution function is in equilibrium determined 

by use of Fermi-Dirac statistics 

( 3 .1) 

where £F is the Fermi-energy and kB the Boltzmann constant. 

However, in the presence of applied fields and temperature gra­

dients, the distribution function will deviate somewhat from 

the equilibrium value 

(3.2) 

In steady-state the rate of change in fk must be zero. Now, 

this rate is caused by three physical effects: diffusion, ex­

ternal fields and scattering of carriers from one state to 

another. By use of Liouville's theorem, this leads in the pre­

sence of an electrical field (E), to 

( 3. 3) 

where -e is the carrier charge and vk=(l/n)Vk£k is the velo­

city, and sc stand for the change in fk due to scattering. In 

the region of "linear transport theory", it is asswned that 

gk/f~ << 1. To first order in gk, eq. (3.3) then gets the form 

(3.4) 
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which is the linearized Boltzmann equation. When this equation 

has been solved, the macroscopic current densities of charge 

and heat can be calculated from their respective definitions: 

( 3. Sa) 

(3.Sb) 

Generally the problem in solving the Boltzmann equation is the 

complexity of the scattering term, which involves all occupied 

states. Roughly it is given by the difference between electron 

transition rate into the state k, and electron transition rate 

out of k. In integral form this should be written 

dfkl J dt SC= [P(k' ,k)fk' (1-fk) - P(k,k')fk(l-fk,)l ·dk' 

(3.6 

where the first term represents the scattering into k and the 

second the scattering out of k.P(k1 ,k2 ) is the probability of 

transition from the state k 1 to the state k 2 , by any kind of 

scattering mechanism. The scattering term, eq. (3.6), can not 

in general be simplified further, but for certain types of in­

teractions it can be shown that the scattering is in the form 

( 3. 7) 

where Tk then is called the relaxation time. 

3.2 GENERAL TRANSPORT COEFFICIENTS ls2I 

In the relaxation time approximation (3.7) the Boltzmann­

equation is given in the form 

(3.8) 
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where 3f~/3T has been deduced. Thus, the steady-state distri­

bution becomes 

(3.9) 

In equilibrium there is by definition no electrical or heat 

flow. Therefore the f~-term of (3.9) must vanish when used in 

(3.5). The steady-state transport integrals are thereby 

0 

[
Ek -EF j d fk 3 

J = -2JeTkVkVk T (-VrT) - eE <-a£k)d k (3.lOa) 

which should be expressed in the general form 

(3.lla 

(3.llb) 

since E and V T are independent of the momenturn. The coefficients 
r 

in (3.11) can all be expressed in the common way 

0 
n afk 3 

Kn= 2 J (£-EP) 'kvkvk<-a£k) d k (3.12) 

which in general are tensors. It is normally advantageous to 

transform these transport integrals from being over a volume 

in k-space into an integration over surfaces of constant energy: 

by which 

(3.13) 

af0 
k (- -'\ -) dEk 

oEk 

(3.14) 

In a one-dimensional metal the energy-surfaces are independent 

of Ek' as discussed in chapter 2 (eq. 2.8). The transport tensor 
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K then has only a finite component in the chain-direction, 
n 

given by 

3f0 

Kn=~ ( 2~)3 J (£k-£F)n 'kvk(- d£:)d£k 

as ldsk/dkl = nvk. 

Electrical conductivity 

The electrical conductivity is defined by the relation 

(3.15) 

J = crE (3.16) 

for a specimen at constant temperature (V T = 0). Hence, from 
r 

(3.11) and (3.15) we have 

(3.17) 

which is an integral over the single electron states. It is 

often suitable to elucidate the macroscopic a as a sum of the 

conductivity distributions from each single electron state, 

by rewriting (3.17) to the form 

(3.18) 

Thermal conductivity 

The thermal conductivity of the electron system will not be 

discussed in detail in this work. However, in relation to the 

later discussion concerning thermopower in systems with more than 

one scattering mechanism, it is advantageous to make a few com­

ments. The thermal conductivity (K) is defined for a specimen 

in an open electric circuit, to prevent any electrical current 

flowing through it: 

Q = K(-VrT)J=O 

Thus, from (3.11) 

K = T-l (K -K2 /K ) 
2 1 0 

(3.19) 

(3.20) 
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The "correction" Ki/K
0

, which results from setting the current 

and not the field to zero, is negligible compared to K2 in com­

mon metallic systems. Thus 

In terms of (3.18), this should be written 

k 2 
T(~) 

e 

Thermoelectric power 

(3.21) 

(3.22) 

The general transport equations (3.11) show that there are 

interacting effects between the electrical and the thermal 

currents, the thermo-electric effects. One of these is the 

thermopower, also named as the Seebeck-effect after T.J. 

Seebeck (1770-1831). It is defined by the ratio of electric 

field to thermal gradient in the absence of electric currents: 

(3.23) 

Hence S is in terms of the general transport coefficients (3.11) 

given by 

(3.24) 

However, in the Boltzmann theory leading to (3.11) and (3.24) 

only the dynamics of the electron system is taken into account. 

The phonon system is assumed ·to be in equilibrium. But when 

there is a thermal gradient over a specimen there is certainly 

a flow of phonons from the hot to the cold end. Such a phonon­

flow will drag charge carriers and thereby make an additional 

thermoelectric effect, the phonon-drag TEP(Sg). In a later 

chapter we will discuss this term explicitly, whereas only the 

"diffusive" TEP (3.24) will be treated in the present and 

subsequent chapters. 

In terms of the single electron state conductivity distribution, 

the thermopower can by use of (3.24), (3.15) and (3.18) be 
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written in the form 

(3.25) 

which is the Kubo-Greenwood formula given by Fritzsche l53I. 

We will in addition to the thermopower mention another thermo­

electric effect: The Peltier effect, TI. This is in a way con­

jugated to the Seebeck effect. By sending an electric current 

through a specimen in the absence of a thermal gradient, there 

will be a flow of heat: 

Q = IT • Jlv T=O 
r 

By use of (3.11), we find 

(3.26) 

(3.27) 

The Peltier coefficient appears to have a rather simple physi­

cal explanation. If (3.27) is rewritten in terms of (3.18) IT 

gets the form 

(3.28) 

Hence IT is identified as the energy carried by the electrons 

per unit charge. By combination of (3.24) and (3.27) we further 

get the Kelvin relation between S and n 

S = II/T (3.29) 

From the expressions (3.25) and (3.28) we notice that the sign 

of S and IT are determined by whether the dominating conduction 

mechanism takes place above or below the Fermi-level. This will 

in most situations lead to negative values for systems with 

less than half filled band (electron-like) and positive values 

for systems of more than half filled band (hole-like). However, 

a further discussion must include a specific band, e.g. tight 



- 28 -

binding band, and also specific kind of scattering mechanism, 

as cr(s) - -T(s)•ds/dk•df/ds. 

3.3 BETHE-SO!-'.IMERFELD EXPANSION OF THE TRANSPORT-INTEGRALS 

The integrals appearing in the linearized transport equations 

(chapter 3.2) do not in general represent known functions. They 

are consequentl1 evaluated either numerically or by expansion 

into power series. Often the latter method is preferred in 

order to explain the transport behaviour in terms of simple 

physical pictures. 

In simple metallic systems the distribution is highly degene­

rated, i.e. 

(3.30) 

The transport integrals can then be treated by Bethe-Sommerfeld 

expansion, by which the integrals are expanded with kBT/sF 

as parameter. In the general form, we have l54j: 

(3.31) 

A'!l odd terms in the power series vanish and the even terms are 

given by 

c = 2r 

00 

E 
s=O 

(-l)s/(s+l)2r (3.32) 

Usually it is not necessary to include terms beyond the second 

power 

(3.33) 
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In the case of electrical conductivity, we identify the ~-func­

tion in (3.17) with 

(3.34) 

which we denote a
0

• This should not be confused with the a(Ek) 

term defined in (3.18) 

(3.35) 

Including only the first non-vanishing term in the B-S expan­

sion of a, we hence get 

(3.36) 

Similarly the thermal conductivity becomes 

(3.37) 

By combining the approximations for a (3.36) and K (3.37), the 

Wiedemann-Franz law may be deduced 

T a (3.38) 

where the prefactor is the Lorenz number. 

The approximation leads to a somewhat more complicated expres­

sion for the thermopower. From (3.25), (3.35) and (3.33), S 

gets the form l55I 

s = 
n2 kB dlnao(EK) I 

3 e kBT dEk EF (3.39) 

which requires detailed knowledge of the scattering mechanisms 

for the single particle states. The equation (3.39) is known 

as the Mott-Jones expression. By use of the definition of a
0 

(3.34) and V]((3.3) we can rewrite (3.39) to the form 1391 

n2 kB [Ek T '.(Ek) l 
S = - ~ -e kBT ~)2 + T(Ek) 

k EF 

(3.40) 
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where the derivatives of £k are with respect to the momentum k. 

It appears from this expression that the TEP is made up of two 

terms: One reflecting the band structure, and one the energy­

dependence of the scattering time. The former term (£k/£k 
2

) 

could be somewhat temperature dependent as a result of shifts 

in bandwidth and charge transfer with temperature. However, 

based on the diffuse X-ray experiments, we do not expect this 

effect to be appreciable in the organic metals. Dependent on 

the dominating scattering mechanism, on the other hand, the 

latter term in (3.40), T 1 /T, may change somewhat with T. An 

experimental observed deviation from linearity, S-T, is there­

fore primarily to be associated with the electronic scattering 

mechanism. 

3.4 TWO CONDUCTION BANDS 

The results deduced in the preceding treatment have all been 

general and valid for any uncorrelated system within the Bloch 

theory, and they are independent of the number of bands repre­

senting the carriers. It is often desirable, however, to study 

the intrinsic transport parameters connected to a single band, 

e.g. the band of a specific kind of chains in the solid. It 

is therefore suitable to describe the coefficients for a gene­

ral system in terms of these intrinsic paramaters j56I. 

The general transport coefficients (Kn) given in chapter 3.2 

are by definition integrations over the single particle states. 

They may therefore be separated directly into parts for the 

individual bands (i), 

= 2: K(i) 
i n 

The conductivity is essentially equal to K • Thus 
0 

a = 2: a. 
i 1 

with a. equal the conductivity of the i'th band. 
1 

(3.41) 

(3.42) 

The thermopower is a little more complicated as it is a ratio 

of two coefficients of the type K. But using the formula (3.25), 
n 

we get 



- 31 -

_ kB r£k-£F 
E 0 i(e:k) 
i s = d£k e kBT a 

a. kB I Ek -£F a. ( £) 
(3.43) 

E-2:. (- 1 
de:k = -) a e k 8 T a. 

1 

which shows that the total thermopower is a result of a conduc­

tivity weighted sum of the intrinsic band values: 

s = E (cr./cr)S. 
1 1 .i 

(3.44) 

Fig. 3.1 Schematic 
diagram of two conduc­
tion bands. 

The approximate thermal conductivity given in (3=21) is; as 

the electrical conductivity, given essentially by a general 

transport coefficient (K2 ). Thus 

K !::::! I: K. 
1 1 

(3.45) 

However, in a more detailed treatment based on the correct de­

finition (3.20), one finds that the macroscopic K involves both 

the electrical conductivity and the thermopower besides the 

thermal conductivity itself. After some reorganization like 

that in (3.43), one arrives at 

K = L 
i 

[ K
1
. - T cr.S. (S-S.)] 

1 1 1 
(3.46) 

In many of the complex organic metals, e.g. TTF-TCNQ, both of 

the molecule types are organized to form highly conducting 

chains. If these chains are effectively decoupled, we saw in 

chapter 2 that they form two independent bands: The donor band 
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(D) and the acceptor band (A). Hence, the measured conductivity 

and thermopower in these systems are composed of the intrinsic 

values as 

a = cr 0 + a 
A 

3.5 MULTIPLE SCATTERING PROCESSES 

The Nordheim-Gorter rule and the Matthiessen's rule 

(3.47a) 

(3.47b) 

Although the charge carrier scattering processes have not yet 

been discussed in details at all, it is natural in this place 

to make some remarks concerning situations where there are se­

veral different scattering processes going on at the same time, 

e.g. electron-phonon and electron-impurity scattering. 

In order to deduce some simple relations between each scattering 

process and the macroscopic transport behaviour, we must use 

some more or less restrictive assumptions. [For a detailed dis-

Beyond the Bloch-condition the matrix 

elements for scattering of the independent. electrons must be 

a function of the carrier energy only, and should not explicit­

ly depend on the wavevector k. Further the charge carrier scat­

tering mechanisms must be entirely independent of one another. 

Then the relaxation time approximation is valid for each of 

the scattering terms (i) . In the Boltzmann transport equation 

(3.4), the scattering term hence becomes 

and thus, the resulting time of relaxation is defined by 

-1 
T 

(3.48) 

(3.49) 

Provided that T is only slightly energy dependent so that the 

Bethe-Sommerfeld expansion is valid, the conductivity must be 
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proportional to T. Thus the resistivity p = l/cr is related to 

T as 

-1 -1 
p ~ T = 2: Ti 

i 
(3.50) 

If we now define the specific resistivity (p.) due to a single 
1. 

type of scattering process solely, we will get 

p = 2: Pi· 
i 

(3.51) 

which is the Matthiessen's Rule. The same result could be 

deduced from rather crude arguments. But as it is seen, eq. 

(3.51) is only true under certain special circumstances j58I. 

Provided validity of the Wiedeman-Franz law (3.38), an equi­

valent rule can be deduced concerning the thermal resistivity (w) 

(equal to the reciprocal of thermal conductivity) : 

w = 2: 
i 

w. 
1. 

(3.52) 

Hence the electrical and thermal resistivities depend on the 

absolute scattering due to each particular mechanism present. 

This contrast with the characteristic of thermopower, in which 

the magnitude of the intrinsic contributions depends on the 

relative scattering, as seen below: By defining the macroscopic 

resistivity dependence of the energy level, corresponding to 

the conductivity in eq. (3.36) 

we can rewrite the Mott-Jones formula (3.39) to 

2 
1T s = 3 

Now, utilizing the Matthiessen rule leads to 

S = 2: 
i 

p. 
1. s. 

p 1. 

(3.53) 

(3.54) 

(3.55) 
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an expression originally derived by Nordheim and Gorter l59I, 

who studied effects of small impurity concentrations on the 

TEP. The formula (3.55) could also be deduced by inspection 

of the model shown in Fig. 3.2, which is based on the Matthies­

sen rule and the Wiedemann-Franz law. The element (i) must 

have a temperature drop which relative to the mascroscopic drop 

is given by 

w. 
~T. = 

1 ~T 
J_ w (3.56) 

The induced thermoelectric potential is therefore 

w. 
~v. = S. (2. ~T) 

J_ J_ w (3.57) 

which lead to the total termopower given by the Kohler formula 

l6ol 

w. 
J_ 

S = E S. 
i w J_ 

(3.58) 

Using the Wiedemann-Franz law, this expression leads to (3.55) 

Fig. 3.2 Schematic 
outline of a two-
scattering mechanism. 

Ri + R2 = R 

• • 

1ti6 T w + ':!!2. 6 T w = 6T 

3.6 TRANSPORT PARAMETERS IN ONE-DIMENSIONAL TIGHT BINDING BAND 

In chapter 2 it was snown that the conduction bands in the ab­

sence of any interchain coupling can be expressed as simple 

cosine bands 
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£(k) = ¥ (1 - coskb) (3 .. 59) 

where w is the bandwidth and b the intrachain lattice constant. 

The Fermi Surface is in this model parallel planes, corres­

ponding to true one-dimensionality. In the present chapter the 

main transport parameters will be expounded on the basis of 

this model. The crystal structure is assumed to be of a type 

where both acceptor and donor molecules form conducting chains, 

and the unit cell consists of one of each molecule (see chapter 

2.1). The coefficients deduced below are the intrinsic parame­

ters corresponding to individual chains. 

Electrical conductivity 

The general one-dimensional transport-theory discussed above 

lead in the tight binding band model to the conductivity (3.17) 

4 e
2 

b
2 r ~ df

0 

a = - - - T (£) [£ (rv-d 1 (--) d£ 
'IT 52 v f d£ 

(3.60) 

where the Fermi surface expression (2.8) and the dispersion 

relation (3.59) has been utilized. In the Bethe-Sonunerfeld 

approximation (3.36) this reduces to 

(3.61) 

The Fermi-energy is determined by the amount of charge transfer! 

£F = £(kF = np/2b). Thus 

n•p sin (-2-) (3.62) 

Since the scattering time generally is inversely proportional 

to the density of states, eq. (3.62) and (2.6) suggests that a 

is proportional to the second power of the bandwidth. 

The charge carrier density (n) for a specific kind of chain is 

in the present formalism given by 

n = p/ ( ~V) (3.63) 
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The mobility must then be in the form 

2 e b
2 

µ = - - - '( 
'IT 112 p 

(3.64) 

In the organic materials the bandwidths are usually rather 

small, i.e. not orders of magnitude larger than the thermal 

energy. The expansion of the transport integrals is therefore 

somewhat erroneous. In Fig. 3.3 the analytical expression (3.61) 

is compared with a numerical calculation of (3.60), assuming 

the scattering time to be energy-independent. It appears that 

the analytical expression leads to excessive conductivity at 

high T. This is a result of the non-vanishing Fermi-factor 

near the band-edges. The rather narrow bands demand further a 

detailed knowledge of the relaxation time, as it may vary strong­

ly within a range of kBT. 

Thermoelectric power 

The integral-form of the thermopower, s, in the tight binding 

band model is probably best given in terms of the conductivity 

w 

s = - -e I (3.65) 

0 

where a(£) and a is given by {3.60). The analytical formula is 

derived using {3.40) and {3.59) 

s = 
2 

TT 

6 
kB kBT ( W-2£F 

e £F W-£F 

This may, as well as the conductivity, be rewritten in 

of the charge density 1611 

s = 
2rr 2 kB 
-3-e (

cos rrp/2 

sin2rrp/2 

{3.66) 

terms 

{3.67) 

In the organic compounds, the charge transfer is always less 

than one: p 2_ 1. Hence, the donor-chain exhibits a positive TEP 

due to the band-structure contribution, whereas the acceptor­

chain exhibits a negative value. 
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In Fig. 3.4 we show the analytical calculations compared to 

the numerical for different values of £F. The plot corresponds 

to the conductivity plot showed in Fig. 3.3 
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CHAPTER IV 

SCATTERING MECHANISM IN ORGANIC METALS 

It appears from the discussion in chapter 3 that the transport 

properties are distinctly affected by the time of relaxation,T. 

We will in the present chapter discuss different possible sing­

le particle scattering models. Since TTF-TCNQ has been most 

extensively investigated, there exist more data for this ma­

terial than for any other organic metal. The calculations will 

therefore mainly be related to TTF-TCNQ, but most of the results 

are general for all the compounds. Comparison with experimental 

transport data should not be taken too serously below 100-lSOK, 

as fluctuations into charge density wave states may be important 

in this region. Furthermore it should be noticed that all cal­

culations presented are based on "constant-volume", whereas 

experimental data normaly are for "constant pressure". In the 

frequently used resistivity approximation 

a 
p=p +p •T 

0 1 ( 4. 1) 

a ~ 2.3 under ambient pressure. In the case of constant volume, 

however, a is somewhat different, depending on which volurnen used 

1621. For example the resistivity is quasi-linear in T, when 

the 60K-volumen is employed 1631. 
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Fig. 4.1 Normalized 
resistivity of TTF-TCNQ. 
1631 

In conventional three dimensional metallic systems the electri-

cal conductivity is mainly limited by electron-phonon inter­

actions. During the last few years the discussion about single­

particle resistivity in the highly conducting organic crystals 

has been focused on such interactions. But beyond the first 

order coupling of the electrons to the acoustic modes, well 
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known from 3D metals, the discussions concerning the present 

compounds have included both the first and second order coupl­

ing to the acoustic as well as the optical and rotational 

(libronic) modes. In the present part we will therefore mainly 

concentrate on e-ph interactions, whereas electron-electron 

interactions will be reviewed superficially. Finally a short 

discussion concerning lattice defects will be given. 

4.1 ELECTRON-PHONON INTERACTION IN TTF-TCNQ 

The TTF-TCNQ unit cell consists of four molecules. With 3 

translational and 3 rotational degrees of freedom for each mo-

lecule, 24 branches arise to the intermolecular phonon 

spectrum. Of these, 3 are acoustic and the remaining 21 opti­

cal. With respect to the highly conducting direction he 

acoustic branches are denoted as the longitudinal (LA) mode, 

the transverse (TA ) mode with displacements principally along 
c 

the ex-direction, and the transverse (TA ) mode with displace-
~ a 

ment along a . Among the 21 optical modes, some correspond to 

translational movements of the individual molecules, others to 

rotational motions (librons) round the n, C and ~-axis defined 

in Fig. 4.2, and the rest are mixtures of translations and rota­

tions 

TCNQ TTF 

Fig. 4.2 Definition 
of the molecular axis 

g I 64 I . 
11 11 

t t 

Besides these intermolecular motions, the external modes, there 

are phonons based on the intramolecular motions, the internal 

modes. In TCNQ there are 54 such normal modes, and in TTF, 

there are 36. l6SI 
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The electron coupling to these phonons will be calculated by 

use of the usual tight-binding Hamiltonian J66j 

+ H = L E.c.c. + L 
j J J J ij 

-1-
(t .. c~c. + h.c.) 

1,] J 1 

+ L: (b {q)b (q) + ~) 
n n n,q 

+ 

( 4. 2) 

The summation is taken over the molecules i and j, the phonon 

wave vector q and the phonon branch n. The first two terms in 

(4.2) give the total energy for the charge carriers, and the 

third term the total energy for the phonons, all in the absen­

ce of interactions between electrons and phonons. 

The COuPling of electrons to the external modes will be taken 

to occur via modulation of the tight binding transfer integral. 

The coupling to the intramolecular modes will be taken to 

occur via modulation of the energy of the conducting electron 

molecular orbital. The interaction is therefore contained in 

the two first terms of (4.2). 

4.2 ELECTRON COUPLING TO EXTERNAL MODES 

As already mentioned, the coupling between electrons and exter­

nal phonons is assumed to occur via modulation of the neigh­

bouring intrachain transfer integrals. The Hamiltonian of in­

terest is then from eq. (4.2): 

Hex 
e,ph 

= L: 
j,i=j±l 

+ {t .. c .c. + h.c.} 
1] J 1 

( 4. 3) 

To obtain the coupling parameters, we may assume that the vibra­

tional amplitudes are small. Hence, the transfer integrals can 

be expanded into power-series of the displacement u: 

t. . = t
0 + 

1,] 

2 
( u. -u.) + •••• 

1 J 

( 4. 4) 
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where t 0 is the equilibrium transfer integral. The interaction­

Hamil tonian can now be decomposed into power-series of u. The 

first and second order Hamiltonians are thus: 

rato + +h.c.] Hl = L: (u.-u.)c.c. 
j,i=j±l 

du 1 J J 1 

( 4. 5) 

1 ra2to 2 + + h.c.] H = L: 2 (u.-u.) c.c. 2 
j,i=j±l du2 1 J J 1 

(4.6) 

As it will be shown below, eq. (4.5) include all electron in­

teractions where only one external phonon contribute to the 

process. Correspondingly eq.(4.6) affects electron scattering 

by two phonons simultaneously. H1 and H2 are therefore indicated 

as one-phonon and two-phonon Hamiltonians, respectively. 

4.3 ONE-PHONON HAMILTONIAN 

The electron annihilation (creation) operators in eq. (4.2) 

are connected to the Bloch-state operators through 

( +) c. 
]CJ 

-k = N 2 
L: e ( - ) i jkb ( +) 

cka 
k 

(4.7) 

By quantization of the displacement operators u in terms of 

the phonon-annihilation (a) and -creation operators (a+) 1671 
q q 

n 
uJ. = l: { 2MNw } 

q q 

the one-phonon interaction Hamiltonian becomes 

Hl = l: 
n 

•{l: 
-k w 2 

q q 

dt {-n-} l: 
du j=±l WIN 3 

[a ei(n+j)qb + 
q 

+ a e 
q 

~ -inkb + l: e ck CJ l: 
kCJ ka 

+ e-i (n+j)qb] a -q 

( 4. 8) 

ei(n+j)kb 
ck CJ 

( 4. 9) 
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By first sight this seems rather complicated. However, conser­

vation of total momentum during the scattering process and the 

assumption that the e-p interaction can not change spin, ex­

cludes most of the terms in (4.9) from being active. The effec­

tive Hamiltonian is then reduced to l66j. 

+ + 
(a +a ) ck+ ck q -q q (4.lOa) 

where 

f 1 (k,q) = -2i(sinkb - sin(k+q)b) (4.lOb) 

The electron scattering time due to this first order interaction 

with external phonons can now be derived by usual second order 

perturbation theory. We will assume that the phonon energy is 

negligible compared to the electron energy, i.e. elastic scat­

tering. The principle of microscopic reversibility is then suf­

ficient to proceed: 

P(k,k') = P(k'fk) (4.11) 

P is the transition probability. Eq. (3.6) lead then to the 

scattering term in the form: 

gk r 
T = JP (k,k+q) 

k 
[f~+q - f~ ]dk (4.12) 

The transition probability can be deduced by use of the Golden 

Rule 

P(k,k+q) = 4r-l:<k+q,nq±lJH1 Jk,nq>]
2 

• N0 (£k+q'k+q) 

(4.13) 

where N0 {€k,k) is th~ density of states in the final state, thus 

corresponding to a specific spin and wave number. N
0

(ck,k) must 
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therefore be a quarter of the density of states N(Ek) dis­

cussed in chapter 2 (2.6): 

( 4. 14) 

The a-function in (4.13) in a lD-tight binding band is only 

finite for k+q=-k+g where g is a reciprocal lattice vector: 

i.e. 

q = - 2k + n • 2 rr /b ( 4 • 15) 

n is in a "normal"-band (t<O) zero for electrons with energy 

less than W/2 (Normal-process), and one for electrons with 

energy larger than W/2 (Umklapp-process). (See Fig. 4.3). The 

opposite relation is valid for an inverted band (t>O). 

N 

k' 

u 

k' 

k 

Fig. 4.3 Transition pos­
sibilities in an elastic 
scattering process in an 
lD tight binding band, 
a Normal-process and b. 
Umklapp-process. 

The Fermi-Dirac functions involved in the scattering expres­

sion (4.12), should thus be coupled as 

( 4 .16) 

and then 

(4.17) 
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The scattering time may therefore be reduced to 

M
2 

(k, -k) 
1 

where M
1 

is the one-phonon matrix element 

( 4 .18) 

( 4. 19} 

Inserting the interaction Hamiltonian (4.10) gives the form 

(for phonon emission) 

2 
Ml (k, -k) = (dt} 

du 2MNw q 
ft ( k, -k) . [ 2 n + l] I 

q q=-2k 
(4.20) 

The scattering time for the electrons due to first-order coupl­

ing to external phonons is now given by 

(4.21) 

jqj=2k 

The corresponding tight-binding band mobility is obtained from 

eq. (3.64) and (4.21) 

1 b 2Mw2 -2 nw e (dt) _g_ 
11 = 327T 53 p du 2n +l 

q 
jqj=2kF 

(4.22} 

which reduces to 

1 b2MW2 -2 (:riw ) 2 
e (dt) q 

11 ~ 

647T ri 3 p du kBT 
jqj =2kF 

(4.23) 

when the phonon energy is small compared to kBT. In this high­

temperature region the mobility has a l/T-behaviour. This is 

the well known situation in conventional 30 metals. However, 

both the phonon energy and the coupling constant in (4.23) 

may also change somewhat with changing temperatures, due to 

thermal contraction resulting in a more rigid lattice. 
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Deviation from the l/T-law can therefore be expected, even if 

the electron scattering is mainly a result of one-phonon in­

teractions. 

In order to investigate the thermoelectric behaviour due to 

the first order e-p scattering, detailed knowledge of the pho­

non-dispersions are needed. Using the analytical approximation 

(3.66) and the expression (4.21) for T gives the thermopower 

2rr2 
S=--3- -e 

(4. 24) 

We note that the bandstructure part of the thermopower has been 

cancelled by a corresponding term in the energy-derivative of 

the relaxation time, actually the density of states. Therefore 

the thermopower is a measure of the 2kF-phonon dispersion re­

lative to the electron dispersion. This is perhaps better seen 

by writing (4.24) in the form 

4rr 2 kB 
S=--3-e 

dw /d(qb) q 

qb=rrp 

4.4 FIRST-ORDER SCATTERING BY ACOUSTIC MODES 

(4.25) 

The main electronic scattering processes due to first order 

interaction with external phonons are probably the scattering 

by the acoustic modes. It has been emphasized that the rota­

tional displacements (librons) may couple more effectively to 

the electrons in the organic systems based on large planar mo­

lecules with extended TI-orbitals, than the ordinary phonons 

l6BI. However, by symmetry arguments, the coupling of electrons 

to such libronic modes are only second-order processes in TTF­

TCNQ j69j. 

The properties of the acoustic modes in TTF-TCNQ are known from 

inelastic neutron scattering experiments (see Fig. 4.4) 170,711. 
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Fig. 4.4 Dispersion curve 
in deuterated TTF-TCNQ for 
modes propagating along the 
chain direction, T = 300K 
1111 . 

The phonon energy corresponding to lql=2kF is therefore known. 

At room temperature the energy of the longitudinal LA mode is 
x x 7.5 meV, while the transverse modes TA(c ) and TA(a ) both 

are 5 meV, approximately. The TA(a~) vibration differs from 

the others in that the molecules move in their own plane so 

that it does not change the intermolecular distances in the 

chain, but still it does produce a change in the transfer inte­

gral. However, by synunetry, the overlap is an extremum in the 

equilibrium position, resulting in a vanishing first order 

e-p interaction 1121. 

Both the LA and the TA(c~) phonon branches show a Kohn-anomaly 

below 150 K 1101, thus suggesting strong first-order coupling 

to the electrons. Based on an Extended Hilckel method, Berlin­

sky et al. have calculated the e-p coupling constant corres­

ponding to the LA-mode for a half-filled tight binding band 

1281. For the TCNQ-molecule, they find 

dtl = 0.17 eV/A du 
LA 

(4.26) 
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With the 2kF-phonon energy equal to 7.3 meV, the electronic 

bandwidth, 0.5 eV, and a charge transfer of 0.59, the scat­

tering time (4.21) becomes 

-14 
TTCNQ(LA) = 2.3xlO sec (4.27) 

2 
This corresponds to the mobility (4.22): µ=16.6 cm /Vs 1731. 

Assuming an w ~q dispersion relation, which is in fairly good 
q 

agreement with Fig. 4. 4, the thermopower ( 4. 24) becomes, 

S=-79,2 µV/k. If numerical methods based on (3.60) and (3.65) 

were used instead of the B-S approximations, the calculated 

values would be 16.7 cm2/vs and -73,9 µV/k forµ and S respec­

tively. The energy-dependent scattering-time enclosed in 

these integrations is shown in Fig. 4.5. 

T = 40 K T = 300 K 

0 w 0 w 

Fig. 4.5 Electronic scattering time due to first order 
e-p interaction with the LA mode. 

Since the molecules in TTF-TCNQ are tilted, the transverse 

TA(c*) vibration will also result in an alternation in the 

intermolecular spacing b. The rate of change of the overlap 

due to motion along c* may be estimated by assuming that the 

component along the chain will affect t corresponding to the 

effect of the LA vibration 1721. The angle between the plane 

of the molecule and the plane perpendicular to bis 34° I sol. 
Thus 
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- dtl tan34° = - du, 0.11 eV/A (4. 28) 

LA 

-14 
resulting in a scattering time equal to 2.3xlO sec. The 

mobility and thermopower calculated numerically for both of 

the acoustic modes are surmnarized in Table 4.1. 

Table 4.1 Transport properties in the TCNQ-chain assuming 
scattering by acoustic modes at 300K 

Mode dt/du nw(q=2kF) µ s 
2 (eV/A) (meV) (cm /Vs) (µV/K) 

LA 0.17 7.4 16.7 -73.9 

TA (c~) 0.11 4.8 16.8 -74.2 

LA+TA(c*) 8.4 -74.0 

µ and S are calculated numerically, based on the equations 

( 4 . 21 ) , ( 3 . 6 0 ) and ( 3 • 6 5 ) . 

The values corresponding to scattering by LA and TA(c~) phonons 

should be compared with the experimentally found mobility and 
2 thermopower for TTF-TCNQ, equal to 3.9 cm /Vs and -28 µV/K, 

respectively. The mobility is· the sum of the values on the 

TTF- and the TCNQ-chain. No matter what the role is of the 

individual chains, we can therefore conclude that unless the 

e-p coupling is enhanced essentially compared with the Berlin­

sky calculations, the electron scattering solely due to first 

order interaction with acoustic modes cannot account for the 

transport properties. A further discussion will be given in 4. 

The qualitative temperature behaviour of the mobility is seen 

from (4.23) to be in agreement with the behaviour corresponding 

to a constant volume equal to the 60K-value, as pointed out 

by Cooper et al. I 6 3 I , Fig. 4 .1. The a - T- 2 · 3 rule observed 

at ambient pressure must therefore in this one-phonon picture 

be attributed as an additional T-1 · 3-factor due to the con­

traction, resulting in a more rigid lattice, and thus an en-
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hanced phonon energy with decreasing temperatures. In Fig. 4.6 

the mobility is shown as a function of T and w • The phonon-

h 
2 q . t' . 

dispersion is assumed to be wqcrq. T e crcrwq approx1ma ion is 

seen to be good. Therefore, if the temperature (volume} dependence 

f h h h 11 1 . h T-2 · 3 1 t o t e p onon-energy s a exp a1n t e ocr ru e, wq mus 
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Fig. 4.6 Mobility of carriers in a tight binding band 
(W=0.5 eV, EF=O.l eV) for first order coupling to acou­
stic modes, as a function of phonon-energy and tempera­
ture. 
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be doubled from room-temperature to lOOK. This rather dras-

tic effect is in agreement with the observed strong pressure 

dependence J74l. However, if the temperature-dependent con­

stant-volume conductivity had been relative to a volume corres­

ponding to a temperature of 200K, or higher, the experimental 

data are not the simple l/T-forrn found by Cooper 1621. This 

controversy cannot be explained by the first-order e-p scat­

tering model. 

A change in the phonon-energy will not affect the intrinsic 

thermopower very much, since S is approximately independent 

of the absolute value of w (4.25). This is illustrated in 
q 

Fig. 4.7 , showing numerical calculations of the TEP. The 

values correspond to the mobility shown in Fig. 4.6.In a two­

band model, however, this phonon-energy (pressure) independence 

of the TEP need not be correct. If the w (P) dependences are 
q 

different in the two chains, this will be reflected via the 

sum-rules (3.47). 

4.5 TWO-PHONON HAMILTONIAN 

Rewriting the quadratic coupling of the electrons to the lat­

tice vibrations (4.6) in terms of phonon-operators is some­

what more complicated, although in principle similar to the 

linear term (4.5) and (4.10). In terms of the creation and 

annihilation operators, (4.6) inunediately becomes 

{L 
q' 

L 
k,cr 

-inkb e 

w-~ [a ei(n+j)qb +a+ e-i(n+j)qb} - L 
q' ~ q q 

q 

-k[- inqb w 2 a e 
q q 

(4.29) 

After some reorganizations and utilizing that only a few of the 

terms will remain after a matrix formation, the two-phonon 

Hamiltonian is reduced to j75I. 
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d 2
t n E ~-2 k £2 (k,q,q')• 

' k du 2MN[w w ,] 2 
q,q I q q 

(4.30a) 

where 

£
2

(k,q,q') = cos(k+q+q')b - cos(k+q)b - cos(k+q')b +coskb 

(4.30b) 

This interaction-Hamiltonian involves beside the electron two 

phonons with wave-number q and q' respectively. Each phonon 

may be either created or annihilated. For each pairs of phonons, 

{q,q') there are therefore basically four different possible pro­

cesses imaginable. The matrix element for scattering for charge car­

riers is consequently composed of the four terms: 

i Absorption of both phonons 

d2t 2 
(-) 
du2 2 2 4M N w w , 

q q 

f
2
2 

(k,q,q' )n n , q q 

= 

ii Emission of both phonons 

{(k+q+q', n +l, n ,+llH2 lk,n ,n ,)} 2 
= q q q q 

2 2 4M N w w , q q 

2 
f 

2 
(k, q, q' ) ( n +l) ( n , + 1) 

q q 

(4.3la) 

(4.3lb) 

iii and iv Absorption of one phonon (q
1

) and Emission of the 

other (q
2
), q

1
,q

2
=q,q' 
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2 
{<k q

1 
q

2
, n -1, n -ljH2 1k,n ,n )} 

ql q2 ql q2 
= 

(4.3lc) 

Assuming elastic scattering (fiwq << sk) the phonon momentums 

are confined by the relation 

k + q + q' = -k + n•2n/b ( 4. 32) 

equivalent with (4.15). The probability that an electron is 

scattered out of the state k, is then, according to the Golden 

Rule: 

P(k,-k) 

(4.33a) 

where q' is given by (4.32), and 

f 2 (k,q) = f 2 (k,q,q') = 2(coskb-cos(k+q)b) (4.33b) 

The density of states utilized is that defined in eq. (4.14). 

Using the conventional transformation from summation to integra­

tion over the phonon-spectrum 

E +JP d = ~n JdCqb) 
q q q 

( 4. 34) 

The expressions (4.12) and (4.33) yield the scattering time 

• 

(4.35) 
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The integration-limits are dependent on the model used, e.g. 

neglecting Umklapp processes or not. Gutfreund and Weger 1751 

assumed that only phonons with momentum in the direction oppo­

site of the charge carriers are effective in the scattering 

process. Their integration region is accordingly q j0,-2kl. 

Furthermore, they have an integration over q', in disagreement 

with the relation (4.32) 1761. Assuming that the phonon-momen­

tum can be in both directions relative to the k-vector, the 

following limits are valid: 

! 1 no Umklapp-processes allowed: 

q E {-n/b, n/b-2k} (4.36a) 

q' = -2k + q (4. 36b) 

ii, including first order Umklapp processes: 

q E { - n /b 1 TI /b } (4.37a) 

q' = -2k + n2n/b-q, n = 0,±1 ( 4. 3 7b) 

where the value of n in (4.37) allow the q'-momentum to be in 

the first Brillouin Zone. 

In the high-temperature region (kBT>>fiwq)' the scattering time 

due to second order electron-phonon interactions, is from eq. 

(4.35) approximately given in the form 

-1 1 e__{E: 
-~ d2t 2 

T 2 (E:k) ~ 

7ffi (W-E:k) } (~) 
M 

2 k du 
( 4' 38) 

2 2 

(kB T) 2 
I f2(k,q) 

dq ( w w ) 
q q' 

Assuming temperature independent phonon-frequencies, this scat­

tering mechanism consequently results in a T-
2 

behaviour of T, 
2 ' 

and hence a T -behaviour of the resistivity, in reasonable 

agreement with the experimental data for TTF-TCNQ at ambient 

pressure. The strong pressure-dependence, as we11 as the 
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deviation from the T2-law, can in this two-phonon picture be 

accounted for on basis of the essentially fourth order depen­

dence on the phonon frequencies (4.38). 

4.6 TRANSPORT PROPERTIES FOR SECOND-ORDER ELECTRON-PHONON 

SCATTERING 

The integration in the expression for T (4.35) has generally 

no simple analytical solution. Further investigations based 

on the two-phonon scattering mechanism are therefore done nu­

merically. 

The second-order derivative of the overlap, d 2t/du
2

, is not 

known in the organic crystals. Only for the rotational displace­

ments (the librons) have values of the coupling term been 

estimated 1751. Gutfreund and Weger assumed that the amplitude 

of these thermal rotations at ambient temperature is such that 

the overlap decreases by roughly a factor of two. In terms of 

the angle of rotation (8), the second-order e-p coupling is 

in the form 

(4.39) 

I being the moment of inertia. Assuming the librons to be dis­

persion-less optical modes 1771 

0 = nwL - 2.5-3.7 meV (4.40) 

the amplitude of the thermal vibration is approximately (kBT/ 

Iw2 ). The estimated coupling is thus 

d 2 t 2 
- - 4 - 10 eV/A 
du2 (4.41) 

for the acceptor chain in TTF-TCNQ, with 4t=0.5 eV. Utilizing 

the lower limit d 2t/du2=4eV/A2 and the libron energy equal to 
-15 4 meV, (4.35) results in a scattering time equal to 10 sec 

for electrons near the Fermi-level of the TCNQ-band. The cor­

responding mobility is 
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(4.42) 

Recalling that the coupling probably has been somewhat over­

estimated, the libron-theory is seen to give a correct order 

of magnitude besides the nearly correct temperature dependence 

of µ. 

In Fig. 4.8 some numerical calculations of mobility for scat­

tering mechanism dominated by second order coupling to the 

phonons are shown. The two curves represent coupling to ! 
dispersion-less optical phonons (e.g. librons) and ii coupling 

to acoustic phonons with w crq. The phonon-energies correspond-
q 

ing to q = -2kF are equal for the two curves, as well as the 

derivatives d 2t/du2 . The results for the thermopower are given 

in Fig. 4.9. With the absence of experimental evidence of the 

coupling parameters in mind, the two situations represented in 

Fig. 4.8 and 4.9 show comparable transport behaviour. The con-
-2 ductivity is characterized by the approximately, T -rule, and 

the possibility of explaining the strong pressure dependence 
4 

via a crwq. The thermopower shows the ScrT behaviour known from 

metallic systems, and experimentally found in TTF-TCNQ. The 

room-temperature TEP are in both cases rather large, -55 µV/K 

and -82 µV/K for scattering by acoustic and optical modes, re­

spectively. This indicate that the scattering term in the TEP­

expression is not negligible compared to the band-term (3.40). 

The intrinsic thermopower is on the whole unaffected by changes 

in phonon-energy and coupling constants. A comparison with the 

experimental value, however, requires more detailed knowledge 

of the separate properties of the two conducting bands. 
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4.7 COUPLING TO INTERNAL MODES 

The interaction between charge carriers and the intramolecular 

vibrations is probably among the most intensively examined pa­

rameters in TTF-TCNQ. This is mainly a result of trying to 

explain the stabilization of the charge density wave in the 

organic conductors as a consequence of the intramolecular dis­

tortion 1661, rather than the more ordinary intermolecular 

distortion. This essential role of the internal modes arises, 

not because the individual intramolecular coupling strengths 

are particularly large, but because there are so many of them: 

54 modes in TCNQ 1781 and 36 in TTF 1791. Limiting the discus­

sion to linear coupling, however, the number of interacting 

vibrations is by symmetry reduced to only 10 normal modes for 

the TCNQ-molecule 1661 and 7 normal modes for the TTF-molecule 

jBOI. These modes are shown in Fig. 4.10. But still this is a 

relative large number of vibrational modes. 

Fig. 4.10 Normal mode amplitudes for the ag-symmetric 
modes in a TCNQ and b TTF. 
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A similar substantial role of these intramolecular vibrat,ions 

could be expected on the single particle scattering j8lj. 

The mechanism of interaction between the electrons and the 

molecular vibrations is taken to occur by modulation of the 

conducting electron molecular orbital. Analogous to the ex­

pansion of the intermolecular overlap (4.4) the energy of the 

electronic state may be expanded. In terms of the dimensionless 

coordinates of the normal modes, Q (j), corresponding to the 
n 

symmetric vibration n and the monomer j, this lead to 1821 

£ ( { Qn ( j) } ) l: d£ 
. dQn(j) n, J 

Qn ( j) + ••• (4.43) 

0 

The Qn(j) 's are related to the lattice displacement vector uj 

of the atomic nuclei labeled j, via 

Q (j) =A . u. • IM. w /n 
n n,J J J n 

(4.44) 

where A (j) is the transformation matrix leading to the normal 
n 

coordinate representation, M. is the nuclei-mass and w is the 
J n 

frequency of the normal mode n. From (4.43), we get the first-

order electron-intramolecular vibrational Hamiltonian: 

H = l: 
n, j 

d£ 
{ ( dQ ( . ) ) 

n J 
c:c. + h.c.} 

J J 
(4.45) 

Analogous to the discussion concerning the intermolecular modes, 

this Hamiltonian should be transformed into terms of creation 

and annihilation operators. While the electron operators are 

those given previously (4.7), the vibrational modes get the 

form 

1 Q (q) = -
n IN 

l: Q (j)exp[-iqR(j)]= 2-~la +a+ 1 
. n q -q 
J 

Thus, the Hamiltonian becomes 

(4. 46) 
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where the coupling constants de/dQn(j), which are independent 

of j 1661, have been replaced by 

(4 I 48) 

The coupling constants in TTF-TCNQ are known from theoretical 

as well as experimental investigations 1831. The theoretical 

calculations have been based on a Complete Neglect of Differen­

tial Overlap (CNDO) type parameterization for the electronic 

structure and a Modified Valence Force Field (MVFF) approach 

for the vibrational modes. The experimental information on 

the magnitude of the coupling constants has been obtained from 

photoemission experiments in gaseous phase, and from polarized 

optical reflectance measurements in the solid state phase. 

The agreement between theory and experiments is rather good 

I 83 I • 

TABLE 4.2 Values of g and nw for TTFj80j and TCNQ l 65 I • n n 

TTF TCNQ 
.MODE gn fiw gn fiw n n 

(eV) (eV) 

1 0.03 0.3843 0.00 0.3784 

2 0.23 0.1933 0.13 0.2735 

3 0.62 0.1882 0.49 0.2003 

4 0.16 0.1335 0.20 0.1725 

5 0.49 0.0918 0.22 0.1483 

6 1.33 0.0585 0.20 0.1213 

7 0.16 0.0314 0.24 0.08~ 

8 0 .. 20 0.0760 

9 0.70 0.0418 

10 1.54 0.0184 

The energy of the intramolecular modes comes out to be of the 

order of the Fermi energy (Table 4.2). The electron scattering 

is therefore inelastic. Still, however, the relaxation time ap­

proximation is valid, since the matrix element for scattering 
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appears to depend solely on the initial state and the phonon­

energy, assuming 

w(-q) = w(q) (4.49) 

The interaction between electrons in the state k and phonons 

of the branch n, is essentially based on the following four 

mechanisms, illustrated in Fig. 4.11. 

i Scattering out of k by absorption of a phonon. 

ii Scattering into k by emission of a phonon 

iii Scattering out of k by emission of a phonon 

iv Scattering into k by absorption of a phonon. 

In the derivation of the scattering time, we will assume the 

optical phonons to be dispersionless. From the Hamiltonian 

(4.47) it then follows that the matrixelement between the sta­

tes k and k+q is equal to the matrixelement between k and 

- (k+q) , provided everything else is the same. Thu·s the matrix­

elements for the ~bsorption processes i and iii are given by 

2 
Ma,n = 

= • n 
n 

(4.50) 

and correspondingly for the two emission processes ii and iv 

2 
{< k+q, n +l IHI 

2 
Me,n = k,n >} n n 

{ < - (k+q) ' IHI 
2 

= n +l k,n >} ( 4. 51) 
n n 

l/N • 2 (n +l) = (g nw ) 
n n n 

nn is the number of phonons with energy nwn. Further, we will 

use relations concerning the distribution functions (3.2): 
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-(k+q) k k+q -(k+q) .k+q k 

l 

- (k+q) k k+Q. - (k+ Q.) k+q k 

II 

Fig. 4.11 Electron scattering by intramolecular vibra­

tions, assuming w (q) = w (-q). i Scattering out of 
n n -

the state k by absorbing a phonon q, ii scattering 

into k by emission of a phonon, iii scattering out of 

k by emission of a phonon, and iv scattering into k by 

absorption 'of a phonon. 
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f k = f o + gk (4.52a) 
k 

fk+q 
0 ( 4. 52li :: = fk+q + gk+q 

f 0 (4.52) 
-(k+q) = fk+q - gk+q 

which are valid in one-dimensional systems. Thus the scattering 

term in the Boltzmann equation, due to the !-process is given 

by: 

(4.53) 

where the symmetry of the density of states (4.14) and the 

h(x) stepfuntion are utilized. From (4.14) and (4.52), the 

scattering term (4.52) reduces to 

g ( i) 

(~) 
T n 

(4.54) 

In a similar way the scattering term due to the ii-process 

becomes 

(ii) 
(gk) 

T n 

reducing to 

= 

(4.55) 
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(ii) 

(gk) = - ~(g nw ) 2 (n +l) • h(W-£ -nw ) 
T u n n n k n 

n 

:& 
f (£k+fiw) (W-£k-fiw >J 2 

- n n 

0 0 
fk+q(l-fk-gk) 

(4.56) 

Combining these two processes, ! and ii, gives the total in­

teraction between the state k and the states with energy 

£k+fiwn. After a few reorganizations, the sum of (4.54) and 

(4.56) becomes 

(i+ii) 
g 
(~) 

T 
n 

h(W-£ -fiw ) 
k n 

(4.57) 

By use of the form of the Fermi-Dirac distribution function 

(4.58) 

and the Bose-Einstein distribution function 

(4.59) 

it is seen that the sum of the first two terms in the bracket 

of (4.57) vanishes, in accordance with the condition in ther­

mal equilibrium 

(4 .60) 

Further, the distribution functions lead to the relations 

and 

n +l 
n • n n (4.61) 
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(4.62) 

Hence the relaxation-time due to the i and ii processes is in 

the form 

1 (i+ii) 
(-) 

1" n 
n 

n 

(4. 63) 

Similarly, a relaxation time due to interaction between 

the state k and the states with energy £k-nwn' can be deduced. 

The process iii, where the electron is scattered out of k by 

emission of a phonon of the branch n, then becomes 

(iii) 
(gk) 

1" n 

and the process iv, reverse of iii: 

g (iv) 
(~) 

1" 
n 

After reductions by use of (4.58) to (4.60) 

processes iii and iv is given by 

(4.64) 

(4. 65) 

the sum of the 



1 
(iii+iv) 

(-) 
T 

n 

- 67 -

(4.66) 

The resulting relaxation time for electrons in the state k, due 

to interactions with the intramolecular optical phonons of the 

mode n is finally given by the sum of (4.63) and (4.66). The 

effects of the h-functions is that they exclude contribution 

to the scattering when the phonon-energy is too large to keep 

electrons in the band, i.e. for the terms described in (4.63), 

h vanish when 

(4.67) 

and correspondingly for (4.66), when 

(4.68) 

The resulting relaxation time due to interaction with all the 

intramolecular vibrations is now given by summation of scat­

tering terms described for each mode in (4.63) and (4.66). 

1841 

n 
n 

0 
1-f (sk+fiwn) 

l-f0 (s ) 
n 

h(W-£ -fiw ) k n 

(4.69) 

Before discussing the transport properties that emerges from 

the electron scattering by interaction with the intramole­

cular vibrations, it is useful to understand the effect of 
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Fig. 4.12 Schematic illustration of the relaxation time 
(T) for a TCNQ-band with electrons scattered by one in­
tramolecular mode. 
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each of the terms in (4.69). In Fig. 4.12, an illustrative 

example is given, showing the energy-dependence of the rela­

xation time for scattering by one mode. For a band like that 

of the acceptor chain in TTF-TCNQ, the illustration corresponds 

to approximately 250K, i.e. a typical temperature in the region 

discussed. 

A characteristic behaviour of the scattering due to these high 

energy internal modes is seen to be a sharp drop in relaxation 

time when the various scattering mechanisms set in. That is 

for energies above nw for interaction with the states of ener­
n 

gy £k-nw , and below W-nw . Further the magnitude of T below 
n n 

£F+nwn and above £F+nwn' by the terms (l-f
0

(£k±nwn)), is sub-

stantially reduced compared to the value at the Fermi-level. 

The transport behaviour is therefore solely a matter of charge 

carriers confined to the regime,jcF-nwn, cF+nwnl. At high tem­

perature, these limits are smeared out, whereas they may be 

rather sharp at low temperatures. Besides this, due to the 

relaxation time enclosed number of electrons taking part in 

transport mechanism, the conventional limits to a region of 

width kBT around £F is substantial. 

In Fig. 4.13, the individual terms resulting in a transport 

coefficient are shown for each of the single electron states in 

the conduqting band. The present example is the thermopower 

of the TCNQ-band, including all 10 internal modes (Table 4.2). 

The energy and coupling coefficients for these modes are dia­

gramatically shown in Fig. 4.13a. The resulting macroscopic 

thermopower is essentially equal to the integral of the curves 

in Fig. 4.13f. We recognize the structure of the relaxation 

time (Fig. 4.13b) as qualitatively equal to that discussed 

referring to Fig. 4.12. At both temperatures shown, this struc­

ture may be of great importance for the transport behaviour, 

in particular the thermopower. Thus numerical calculations are 

necessary when the effect of scattering due to intramolecular 

vibrations are investigated. 

In Fig. 4.14 calculations of the mobility and thermopower for 

the TCNQ-chain are shown. The values of nw and g used for the n n 
calculations are given in Table 4.2. The temperature dependence 
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of the mobility is seen to be in good agreement with the expe­

rimentally found µ ~ T2 · 3 behaviour at ambient pressure. The 

absolute room-temperature value of 13.5 cm2/Vs is however 2.3 

times the value found ~xperirnentally in the best crystals. 

Further, the electron scattering by the internal vibrations can 

not account for the strong pressure dependence. The only pres­

sure dependent parameters are the bandwidth W, and the charge 

transfer p, and none of these is able to explain the µ(P) be­

haviour. 

With respect to the thermopower, we must know the intrinsic 

values of S and µ for both chains, unless one of them does not 

contribute to the transport at all. Based on the parameters 

given in Table 4.2 these values, besides the mobility for TCNQ 

already given,become µ(TTF) = 4.2 cm2/Vs, S(TTF) = 16 µV/K 

and S(TCNQ) = -38 µV/K. The resulting thermopower for TTF-TCNQ 

is hence -26 µV/K, in good agreement with experiments. Also 

the quasi-linear temperature dependence (Fig. 4.14b) is in agree­

ment with experiments. 

In conclusion, however, we mus~ based on the mobility data, 

exclude the model of a scattering mechanism solely due to the 

interaction with intramolecular vibrations. 

Table 4.3 Transport behaviour for TTF-TCNQ, when the carriers 

interact with the internal modes given in Table 4.2. 

TCNQ 

µ(cm 2/Vs) 4.2 13.5 

S(µV/K) 16 -38 

TTF-TCNQ 

17.7 

-26 

experimental 
TTF-TCNQ 

3 

-30 

* The mobility of TTF corresponds to conduction by holes, 

i.e. 0.59 carrier per molecule. 
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4.8 SCATTERING BY ALL FIRST ORDER ELECTRON-PHONON INTERACTIONS 

From the previous discussion it appears that the best known 

parameters with regard to electron-phonon interactions, pro­

bably all concern first order interactions. In the present 

part the transport behaviour in TTF-TCNQ will be calculated on 

the basis of all these well-known first-order e-p interactions. 

The coupling constants and phonon energies utilized are given 

in Table 4.1 and 4.2 for the TCNQ-acoustic modes and for the 

internal optical modes, respectively. In the absence of data 

for the external modes of the TTF-chain, the values are taken to be 

the same as for TCNQ. The bandwidths used are 0.5 eV for the 

TCNQ- and 0.25 eV for the TTF-band l28j, and the charge-trans-

fer is 0.59 electrons/molecule j85j. 

In Fig. 4.15 and 4.16 numerical calculations of the mobility 

and thermopower are shown. The mobility is seen to be dominated 

by the TCNQ-chain, as expected from the experimental data of 

the thermopower 1391 and Hall-effect 1401. Still, however, the 

first order e-p scattering gives a room-temperature mobility, 

which is too large. 

On the other hand, the thermopower comes out to be in good 

agreement with the experimental data (Fig. 1.8 and 4.16c). The . 
S(T) curve is not quite as linear as the one experimentally 

found, but has a slight curvature. That is mainly a result of 

the scattering properties in the TTF-chain: At high temperatu­

res all modes contribute equally to the scattering process, 

whereas the external modes dominate at lower temperature (see 

also Fig. 4.15). From Fig. 4.16 it appears that the thermopower 

is a result of intrinsic terms of numerical values much larger 

than the resulting one. In a system where only one of the chains 

contributes to the transport-properties, we therefore on the 

basis of first order electron-phonon interaction would expect 

a rather enhanced thermopower. This is in fact the experimen­

tal reality in TTF-TCNQ. Taking doping experiments, for example, 

we may expect the conductivity of the doped chain to decrease 

because of static disorder, and therefore more or less bulk 

transport behaviour equal to the intrinsic values of the un­

doped chain j86 I· Doping of TTF-TCNQ with TSF, in that way, 

results in an enhanced thermopower of approximately 50% 187 I, 
in good agreement with the model in discussion. 
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Assuming the model to be essentially correct, the reduced 

mobility in the experiments may originate in some sort of 

lattice-defect scattering 1811. That would also explain the 

rather large variations in the observed a /o(300K)-ratio. max 

4.9 ELECTRON-ELECTRON INTERACTION l89,9lj. 

In the previous discussions concerning scattering mechanisms 

the electron-electron interaction has been completely ignored. 

This is in contrast to a number of proposed models that have 

used the enhanced susceptibility over the Pauli-value as evi­

dence for strong Coulomb-coupling l88j. In fact, e-e interac­

tion has also been proposed to account for the conductivity 

behaviour in TTF-TCNQ j89-9ll. 

In order to affect the conductivity, the e-e collisions must 

transfer momentum to the lattice. This may be done via ! 1 Um­

klapp-processes or ii (provided a two-band model) via trans­

fering momentum from high-mobility charge carriers in the one 

band, to low mobility carriers in the other. From the discus­

sions in the previous parts, concerning electron-phonon inter­

actions, the latter possibility of e-e scattering mechanism 

must be excluded in the TTF-TCNQ. Although the e-p relaxa­

tion time turned out to be larger in the TCNQ-band than in the 

TTF, the difference was not big enough to explain a drain of 

momentum from the acceptor-chain, via the donor-chain to the 

lattice. In one-chain systems like (TMTSF} 2-PF6 , for example 

a possibility of contribution to the resistivity from e-e 

interactions in the form of ii, by definition does not exist. 

Thus, scattering due to electron-electron interaction is only 

working via Umklapp processes. 

A collision between an incident electron at the Fermi-level, 

with momentum k 1 = kF and a target electron of momentum k 2 , 

must satisfy the momentum conservation law 

(4.70) 
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where g is a reciprocal lattice vector. In three dimensions 

the conductivity due to e-e processes is given by 1921 

a e-e 
e 2 1 E:F 

= fi kFaF (kBT) 

2 

(4. 71) 

where aF essentially is the e-e matrix element. The dominant 

factor in this expression is the (kBT/E:F)-
2 

- term, which 

arises from the need to satisfy the Pauli-exclusion principle 

twice, once for the initial state of the electron, and once 

for the final. By use of the extended Born-approximation, the 

conductivity in a tight binding band model becomes 1911 

0 e-e 
w4 p 3 sin4 (1Tp/2) 

Q T2 
(4.72) 

where Q is a function of the screening constant. The main fac­

tors to note in (4.72) are the dependencies on the bandwidth, 

w4 , and the charge-transfer, p 3 stn4 (1Tp/2). Thes~ factors could 

explain the large pressure dependence of the conductivity, and 

the deviation from the T- 2-dependence. 

In strictly one-dimensional systems Umklapp-processes involve 

simultaneous jumps of two electrons from one side of the Fermi­

surface to the other, i.e. k 1=k2=kF and ki=ki=-kF. But then 

from (4.70) we have that the scattering process can only oc­

cur in the case of one electron per molecule, because only in 

that case is 4kF equal to an inverse lattice vector. It is well 

known that TTF-TCNQ under ambient pressure has 0.55-0.59 elec­

trons per molecule. Therefore electron-electron scattering can 

not be the dominant mechanism of resistivity. 

Furthermore, the final states in one dimension are entirely 

defined by the momentum relation (4.70) in contrast to two and 

three dimensions where the number of allowed final states intro­

duced a (kBT/E:F)-factor. Therefore, e-e scattering vary only 

linearly with temperature in lD. j93l 

In conclusion, the e-e collisions can not be the dominant scat­

tering mechanism in the highly conducting organic materials 
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like TTF-TCNQ. On the other hand, there is good evidence for 

a strong Coulomb correlation in the 1:2 salts with narrow, 1/4-

filled bands, e.g. Qn (TCNQ) 2 j94,95I. 

4.10 INFLUENCE OF LATTICE DEFECTS AND IMPURITIES 

The rather large variations in the experimental conductivity 

behaviour in TTF-TCNQ, especially the a /ORT-ratio, provides max 
evidence that the transport properties are affected by some 

sort of lattice defects or impurities. We will not take up a 

detailed discussion on how to model these effects,or on the 

possibility that defects may lead to localized states in one­

dimensional systems. Instead we will in an extremely simplified 

model assume that the effect of defects can be represented by 

a relaxation time on equal terms with the other scattering 

mechanisms. 

In the model we assume that the defects can be represented by 

an effective average chainlengthconsisting of v molecules, 

1 = v • b. The scatte~ing is then ~iven by the inverse relaxa­

tion-time, as 

(4.73) 

where v is the velocity of the charge carriers. In a tight 

binding band model we thus have 

l = 
d (4.74) 

In Fig. 4.17 some calculations are shown in order to illustrate 

the influence of the defects. The example gives the TCNQ-band 

with 0.59 electrons per molecule and width equal to 0.50 eV. Be­

sides the effect of an effective finite chain-length, the scat­

tering is taken to occur via interaction with the LA-mode. The 

chain-length is assumed to be independent of temperature. 

The effect of an additional scattering mechanism due to such 

chain-breaks is obviously a reduced conductivity, but also a 
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reduced thermopower. If we for a moment imagine T~l to be the 

dominating scattering term, we have from (4.73) and (3.66) a 

vanishing thermopower. That is to say that the intrinsic ther­

mopower due to the effect of a finite chain-length is zero. 

This is a property of the lD Fermi surfaces (In the case of a 

JD-spherical FS, the pure impurity scattering would reduce 

the band-TEP with a factor of three). 

From the Nordheim-Gorter rule (3.55), when more scattering 

mechanisms are prominent, the resulting thermopower is reduced 

in proportion to the intrinsic parts, as 

(4.75) 

as it was seen in Fig. 4.17b. The labels d and o marks the 

intrinsic values due to scattering by the defects and all other 

mechanisms, respectively. 

The assumed impurity model of an effective chainlength indepen­

dent of the electron energy is probably somewhat erroneous. 

Detailed calculations in 3D systems with isotropic scattering 

by ionized impurities lead on the contrary to a i ~ v
4

, i.e. 

T ~ v 3 l96j. This kind of impurity scattering will result 

in an enhanced TEP rather than the reduced found above. The 

calculations are, however, based on isotropic scattering, and 

can therefore not in a simple way be transformed to the lD 

situation. To our knowledge there are no impurity scattering 

models available for single-particle transport calculations. 

Provided the characteristic chain-length is independent of the 

temperature, it is from (4.73) evident that the scattering 

term is as well. As T goes to zero, the common electron-phonon 

scattering vanishes. The impurity-term becomes therefore more 

important as T is lowered. 

For impurities with magnetic moments, however, the spin-degene­

racy lead to an impurity scattering which is intrinsically 

T-dependent. At low temperatures it is well known from 30 di­

lute alloys that such magnetic impurities are the origin of the 

peculiar resistivity minimum and the correlated strongly tern-
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perature dependent susceptibility 197,981. 

In attempts to understand this effect of magnetic impurities, 

the scattering term must be calculated beyond the first Born 

approximation that usually is sufficient. To treat the inter­

action between a conduction electron with spin s and an impuri­

ty with spin S, we use the isotropic exchange Hamiltonian 

H = -J/N • S•s (4.76) 

where J is the exchange coupling constant. In the first order 

Born approximation, we have the~matrix-element 

Ml(k+,k'+) = <k+IHlk'+> (4.77) 

for an electron with spin (+) scattered from state k to k'. 

By using (4.76) we get 

(4.78) 

This term will in principle act like the (unmagnetic) impuri­

ties discussed above. However, going to the second order Born 

approximation, Kondo has shown that a rather large temperature 

dependent scattering results. Scattering from the state (k+) 

to the state (k'+) via an intermediate state (k"cr) can appear 

in two kinds of processes. ! The electron is first scattered 

to (k;'cr) and then to the final state, and ii, an electron is 

first scattered from the (k",cr) into the final state and then 

the "initial" electron is accepted in (k",cr). The matrix ele­

ment corresponding to these processes is 1971 

M2 = l: .: ((1-fk")<k+jHJk"cr><k"cr!Hlk'+> + 
k"cr Ek Ek" 

( 4. 79) 

fk"<k"crlHlk'+><k+IHlk"cr>] 

Unlike normal scatiering processes, the order of the terms in 

the bracket of (4.79) for spin correlation is significant. The 

Fermi-Dirac function fk" is therefore not canceled, but leads 
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to a strongly energy dependent scattering term, which approxi­

mately may be written in the form j97l 

(4.80) 

The singularity in this expression can be shown to lead to an 

impurity resistivity of logarithmic temperature dependence 1971 

(4. 81) 

which combined with the common e-p scattering can explain the 

observed resistivity minimum. 

From the thermopower expression (3.66) we notice that the strong­

ly energy dependent scattering (4.80) will lead to a rather 

large thermopower, as the impurity scattering becomes dominat­

ing, i.e. at low temperatures. This is in agreement with expe­

riments, e.g. Fe-impurities in Au, which characteristically 

show a well defined peak in S(T). 

These effects of localized magnetic impurities, the Kondo ef­

fects, are in the derivation based on isotropic 30 scattering. 

To our knowledge corresponding calculations have never been 

done in strictly lD models, but we believe that the results are 

qualitatively the same. 

The arguments above, concerning lattice defects and (unmagnetic) 

impurities have assumed these to be evenly distributed, so that 

an effective chain length can be defined. Often, however, this 

is probably not the situation in the crystals of interest. 

In the example shown in Fig. 4.18b there are only a few, but 

violent defects. The electrical contacts between the domains are 

probably more or less destroyed, resulting in a large external 

resistance, although the intrinsic material may be highly con­

ducting. The thermal contacts between the domains need not be 

affected in a corresponding manner. More likely the small region 

of defect is almost thermally shortened. From (3.58) we find 

the measured thermopower to be equal to the intrinsic value. 
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Thus, the TEP measurement is well-suited for the quasi-one-di­

mensional compounds. 

a 

b 

Fig. 4.18 Illustration of defects in the chain. 
a The defects lead to an additional scattering 
mechanism represented by the length 11 and b, 
the defects separate the chain into independent 
domains. 
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CHAPTER V 

PHONON DRAG 

Until now all calculations of the transport properties have been 

made under the Bloch assumption, which take the phonon system 

to be in equilibrium. However, from the fact that electrical 

insulators do conduct heat, we know that a temperature gradient 

induces heat transport via lattice vibrations. Such a flow of 

phonons may interact with charge carriers, sweeping them along 

from the hot end to the cold end of the specimen. Generally in 

3D conductors, the phonon scattering at high temperatures more 

frequently is due to interaction with other phonons than with 

electrons. The phonon flow is therefore mainly affecting the 

electrical transport properties at low temperatures. 

Formally the transport properties including the phonon current 

can be described in terms of the Boltzmann transport theory 

(Ch. 3). In addition to the equation for the equilibrium of 

the electron system we must add a corresponding equation for 

the phonons. The treatment of the transport properties requires 

thus simultaneous solution of two Boltzmann kind of equations, 

and may be done by use of a variational method 1991. We will 

not expound these calculations, but only give some qualitative 

comments. 

5.1 RESISTIVITY 

The electrical resistivity is affected by the phonon flow only 

through the lattice resistance, pL, i.e. the scattering by lat­

tice vibrations. The resistance can be written in the form l99j. 

(5.1) 

where N and U denotes normal and Umklapp processes respectively 

and the drag parameter y is a measure of the probability for 

the phonons to transfer their momentum to the electrons. 

In ordinary 3D metals, the phonons are mainly scattered by im­

purities and other phonons, the latter especially at high tem­

peratures. Thus the drag effect on the resistivity only occurs 

at low temperatures and only when the materials are very pure. 
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In lD metals, on the contrary, Gutfreund and others ll00-102j 

have proposed that phonon drag may play a major role in the 

conductivity, even at ambient temperature. Kaveh et al. jl021 

showed that the phonon drag only affects the Normal scattering 

processes. The Umklapp processes are unaffected apart from a 

multiplication with a nearly temperature-independent factor 

(1-yu), whose magnitude is close to unity. On the other hand, 

since all electrons on the Fermi Surface of a lD metal partici­

pate in the absorption of 2kF-phonons, the absorption rate of 

these 2kF phonons by the electrons is far greater than in 3D 

systems. Thus the phonons with q 11 =2kF have no time to equili­

brate with the lattice and are dragged along by the electrons 

jl03j. In this model the phonon-drag therefore el!minates all 

normal electron-phonon scattering. 

As remarked in chapter 4, there is no first order electron­

phonon Umklapp processes in lD systems with 4kF < 2n/b. 

A consequence of the discussion above is therefore that the 

lattice resistivity is arising from second order electron-phonon 

(libron) Umklapp processes only. Evidence for this model has 

come from the experimental investigations of irradiated TTF-TCNQ 

samples, where the phonon-drag must be quenched by the phonon­

impurity scattering j102j. The resistivity of these crystals 

can be given in the form 

p = p + A • T + B T2 · 3 
0 

(5.2) 

where the linear term, AT, account for the scattering due to 

acoustic modes in the absence of phonon-drag, and the "quadrac­

tic" term, BT2 · 3 , approximately is doubled compared to pure 

samples because of the additional N-scattering processes. 

The phonon-drag is a de-effect. The enhanced conductivity will 

therefore only occur at low frequencies. This is in agreement 

with the observed very strong frequency dependent conductivity, 

which falls off co~siderably at w - 10 cm-l ll04,105j. 



- 86 -

5.2 THERMOPOWER 

In 3D metals the most striking consequence of phonon drag is 

usually seen in thermoelectric power 119-211. As the phonon flow 

drags electrons with it, extra electrons tend to pile up at the 

cold end, creating a phonon-drag thermopower, Sg· 

The size of this term must be proportional to the probability 

of a phonon-electron interaction process, relative to the pro- . 

bability of a phonon interacting with any particle. Thus 

s 
g 

-1 
T pe = 

T po ( 5. 3) 

where T and T is the phonon relaxation time due to scat-pe po 
tering by electrons and by any other particles, respectively. 

Actually the relationship (5. 3) only takes into account a single 

phonon-state. In one-dimensional systems (5.3) may be sufficient 

for accurate treatment of the phonon-drag thermopower, whereas 

in 3D we must integrate over the phonon spectrum. 

If Tpe << Tpo' all the dissipated phonon momentum is transfer­

red to the electrons. If we further restrict the processes to 

be of the N-type, we will get all the obtained momentum in the 

same direction, p = nq, and thus the maximum attainable phonon-e 
drag thermopower. 

The force acting on the electron system from the flow of phonons 

1191 , is: 

dn 
_!_ l: __g ?:: 
3 dt uq ( 5. 4) 

q 

provided the phonon system behaves like an isotropic gas, 

dnq/dt is the rate at which phonons of wavevector q are destroy­

ed by the N-process. (4) may be reorganized to the form 

1 dn dr 
- l: __g VrT • nq 
3 q dT dt (5.5) 

where dr/dt = Vqwq is the phonon velocity. 
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But in the steady state situation, this must be equal to the 

electrostatic force appearing, 

-eE NV 
0 

(5.6) 

where NV is the number of conduction electrons in the volume 

V. The maximum phonon-drag thermopower, Smax 
g 

thus from (5.5) and (5.6) 

dn 
l l\'__g \7 

3Ne V t... dT • v w • q q q 
:riw 

q 

Within the Debye approximation, w cr q, we have 
q 

V w • :riq = :riw q q q 

Thus the phonon-drag thermopower is in the form 

l l d 
3Ne (v dT L: n fiw ) q q q 

E /V T, is o r 

(5.7) 

( 5. 8) 

( 5. 9) 

but the paranthesis is in fact just the lattice heat capacity, 

C , whereby 1191 v 

c 
8max = _ ___5!_ 

g 3Ne 
(5.10) 

At high temperatures, C in the Debye approximation is constant 
v 

and given by 

c = 3N
0

kB v 
(5.11) 

and so 

kB N 
smax 0 = N g e 

(5.12) 

where N/N 
0 

is the number of electrons per site. 

In ordinary 3D metals, N/N ~ 1, and the maximum conceivable 
0 

S is thus of the order of -86µV/K. Urnklapp-processes, however, g 
may be as frequent as the Normal-process in this temperature 

regime. These processes reverse the electron velocity, resulting 
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in an electron flow to the hot end· of the conductor, and thus 

contributing with a positive phonon-drag thermopower. The resul­

ting S , which is a resistivity weighted sum of the two indivi­

dual l~rge terms, SN and s0
, is generally found to be very 

g g 
small at ambient temperatures. Whether it is positive or nega-

tive depends on the relative probability of N and U processes. 

Furthermore, the phonon-drag thermopower is reduced relative to 

the scattering mechanism (5.3). In ordinary 30 metals the high­

temperature phonon scattering is mainly due to phonon-phonon 

interactions. From (5.3) we therefore find 

S ex: T /T 
g PP pe 

(5.13) 

-1 . 
Tpp is proportional to the number of phonons, and thus approxi- · 

mately to the temperature, whereas T-l is temperature-indepen­
pe 

dent. We will therefore expect a phonon-drag thermopower 

s 
g 

-1 
ex: T (5.14) 

a behaviour which actually is found in sev~ral metals, although 

deviations may be expected both from a different temperature 

dependence of the N and U processes, and from the influence of 

phonon dispersion. 

At low temperatures, the phonon-electron scattering becomes 

dominant, and the U-processes will be frozen out. Thus the ex­

pression (5.10) should be valid. In simple 30 systems Cv at low 

temperatures is in the form 1671 

c 
v 

12 1T4 T 3 
~ N k (-) -S- o B 8

0 

thus resulting in a 

(5.15) 

(5 .16) 

beha~iour, in accordance with several experimental results. 
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Fig. 5.1 Sketch of dominating scattering behaviour 
at high and low temperature in a 3D systems and in 
b lD systems. 

The transfer of momentum from phonons to electrons in a 3D 

metal is schematically outlined in Fig. 5.la. At low temperatures 

there are only phonons with small energy. The main scattering 

is therefore "vertical", that is to· say that electrons are scat­

tered virtually at constant k 1191. At higher temperatures, on 

the other hand, these vertical transitions become less impor­

tant. The more energetical phonons will dominate in "horizontal" 

processes. 

In one-dimensional systems "horizontal" processes are the only 

possible. But the phonon softening still makes drag effects pos­

sible at all temperatures. Furthermore, we saw previously that 

U-processes are less frequent than momentum conserving ones in 

lD systems. We would therefore from the discussion above, at 

first expect a rather large phonon-drag thermopower in lD. 

However, from (5.7) we know that Sg is proportional to the 

phonon group velocity. Both the librons and the intramolecular 

phonons are more or less dispersionless, giving only small in­

trinsic phonon-drag thermopowers. The dispersion of the acoustic 

modes is larger, but somewhat complicated by the Kohn effect, 

which may cause a reduced value near q = -2kF. Further, the 

enhanced conductivity due to the acoustic phonon-drag makes the 

intrinsic S less influential. The value of S should thus be g g 
reduced appreciably compared to the Debye model. 
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However, much more theoretical investigations are necessary in 

order to understand the role of phonon-drag in one dimensional 

metallic systems. 
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CHAPTER VI 

TRANSPORT PROPERTIES IN THE NON-METALLIC REGIME 

In Chapter IV and V we have discussed the transport properties 

in one-dimensional systems based on metallic behaviour, i.e. a 

well defined conduction band of a width, which is large compared 

to the thermal energy, and an approximately temperature-indepen­

dent number of uncorrelated charge carriers. However, all the 

known organic charge transfer compounds are at ambient pres­

sure semiconducting below some finite temperature. The majority 

of charge transfer compounds are even insulating or 

semiconducting at ambient temperature. 

The insulating, or semiconducting, state has many interesting 

properties of its own, but will not be discussed in detail 

in this thesis. However, it is appropriate to give some of the· 

most important results. The present survey will be restricted 

to organic compounds of segregated stacks, which are the only 

candidates for metallic behaviour. 

The origins of a prevalent insulating state are various. 

The planar Fermi Surfaces, characteristic for lD systems, give 

rise to a conduction band that is subject to the periodic lat­

tice distortion (PLD) of wavevector 2kF. This formation of a 

superlattice causes a gap at the Fermi level producing an insu­

lating material, the Peierls-semiconductor l1al. The dimeriza­

tion of the alkali-TCNQ salts, has for example been suggested 

to be of the Peierls type 11061. In other materials the chains 

remain uniform down to reasonable low temperatures, e.g. TTF-TCNQ 

and (TMTSF) 2-PF 6 which undergo Peierls transitions at 53 K 11011 
and 19 K 1311 respectively. 

The effect of repulsive electron-electron interactions can also 

cause an insulating ground-state. The model Hamiltonian which 

is convenient to describe this situation, is the extended Hub­

bard-Hamiltonian 11081: 
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E + + H = -t (ct c + c c ) 
£,a ,a £+1,a t+l,a £,a 

+ u E n n 
0 £,a £,a £-a (6.1) 

+ E u. n£ nt . ' 
t,j,a,a' J ,a +J,a 

where t is the ordinary nearest neighbor transfer integral, U 
0 

is the onsite Coulomb interaction and U. is the Coulomb inter­
] 

action between electrons on sites j units apart. 

If the Coulomb repulsion is large compared to the bandwidth, it 

is energetically favorable to localize the electrons j23I. In 

order to move an electron, double occupied sites must be created 

which cost the energy u, i.e. the uniform system is a semicon­

ductor, the Mott-Hubbard insulator. For NMP-TCNQ, is has been 

suggested that the experimentally observed gap occurs because 

of onsite Coulomb repulsion 17-111, i.e. the gap is a Mott-Hub­

bard gap at midband. For the quarter filled salts, e.g. Qn(TCNQ) 2 , 

the nearest neighbor Coulomb interaction (U1 ) is proposed to be 

responsible for the gap at the 1/4 band level j94,110-113l. 

Localization of the electrons can also be a result of formation 

of small polarons, i.e. carriers followed by their induced po­

larization cloud of phonons. The organic compounds are particu­

larly exposed to formation of small polarons, because of the 

appreciable electron-phonon interaction 11141. An important ef­

fect of the small polaron formation is a reduction in the ef­

fective Coulomb repulsion, but it also leads to severe band 

narrowing. This band narrowing tends to favor the insulating 

state 11141. 

Also static disorder may cause an insulating behaviour. In one­

dimensional systems, any disorder makes the electrons localized 

at least in the ground states, and electronic conduction can 

occur only by hopping 11151. 
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6.1 CONDUCTIVITY 

The transport properties in the insulating lD compounds are 

dependent of the origin of the insulating state. · 

Both the Peierls and the Mott-Hubbard semiconductors may, 

provided reasonable overlap integrals, be treated as conven­

tional semiconductors with thermally activated conductivity 

(6.2) 

where E is the activation energy. The factor a may in general a o 
have a slight temperature dependence, but the dominating varia-

tion with temperature comes from the exponential function. Remem­

bering that a involves both the mobility (µ) and the carrier 

density (n), 

a = neµ (6.3) 

we may find the correct temperature dependence of the prefactor. 

The µ(T) behaviour is, in principle, the same as discussed 

under metallic conductivity. The density of carriers is given 

by 

1 
n = E f (s)N(s)ds (6.4) 

which for a simple lD tight binding band J1sl in the limit: 

(sb-sF) >> kBT' gives 116! 

(6.5) 

Further deviation from the simple activated behaviour, (6.2), 

may arise from the presence of two conduction stacks in many 

of the compounds, as the carriers in these stacks contribute 

with different activation energies. 

In case of disordered lD systems, the electronic conductivity 

can occur only by phonon assisted hopping lll5J. Following the 
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Mott-arguments 11171 that an electron, instead of hopping to 

a nearest neighbor site, can hop to a distant but energetically 

more favorable state, Bloch et al. jllSI from dimensional con­

siderations proposed a temperature dependence of the form 

k 
o ex: exp [- (T

0
/T) 2 J (6.6) 

where T
0 

is a constant. Shante has in a corresponding model 

based on anisotropic hopping 11181, i.e. including interchain 

hopping, found the form 

o ex: exp (6.7) 

where m is weakly temperature dependent. For asymptotically low 

temperatures, m equals 4(3) for 3D (2D) anisotropic conductors, -

and decrease to a value between 2.7 and 2.9 for increasing tem­

peratures. At still higher temperatures, the hopping model 

breaks down, as the chains becomes essentially decoupled jll8I. 

The conductivity is then activated, and m=l. 

6.2 THERMOPOWER 

The thermoelectric power may for semiconductors, as well as for 

metals, in general be deduced from the Kubo-Greenwood formula 

(3.65) j53j, 

S = - kB 1s-sF o(s) ds 
e kBT 0 

( 6. 8) 

Since EF is outside the conduction band(s), it is convenient 

to split (E-EF) into the two parts 

(E-£ ) = (E-£ ) + (E -£ ) F b b F (6.9) 

where Eb denotes the band-edge. (Fig. 6.1). 

For a single band, eq. (6.8) now lead to the expression for the 

intrinsic thermopowe~ 

(6.10) 
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Fig. 6.1 Energy-level 
diagram of a two-band 
model. 

where A1 , the "kinetic-energy term", accounts for the fact 

that the carriers are distributed beyond the band edge: 

£b+w 

J 
£-£ a ( £) 

Al 
b d£ ( 6 .11) = 

kBT a 
£b 

Usually A1 is fairly temperature independent co~pared to the 
T-l term. 

For a two-band conduction mechanism, the upper and the lower 

bands in Fig. 6.1, the conductivity weighted sum rule, 

S = L a./a·S., gives the total thermopower in the form 
1 1 

+Al (6.12) 
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where e and h denotes electrons in the.upper band and holes in 

the lower band, E is the gap, Eg = E~2 ) - E~l), and EM is the 

gap center, E = ~ (E <2 > + E (l)). A is the weighted sum of A
1
(l) 

(2 ) M b b 
and A

1 
. 

For an intrinsic semiconductor, the (EF - EM) difference is 

given from the density of states ratio 

( 6 .13) 

where me and mh are the masses of electrons and holes, respec­

tively. Thus 

S = - kB [cre-crh 2.k£gT + 3 ln me + A] 
e ae+ah B 4 ~ 

(6.14) 

From the slope of the S(T-l) curve, one then can find an "ef­

fective" energy-gap, E ff= (a -crh)/(cr +crh)x£ • It should be g,e e e g 
smaller than the value, we can deduce from the activated conduc-

tivity. In fig. 6.2, a plot of the thermopower for TTF-TCNQ, is 

shown as function of T-1 • We notice the characteristically semi­

conducting behaviour below the 38K-transition. 

In many of the organic salts, e.g. TTF-TCNQ, both the donor and 

the acceptor molecules form chains taking part in the conduction 

process. Then, we do not have two kinds of carriers, but rat­

ther four in the semiconducting state. Neglecting the two latter 

terms in (6.14), we still find a T- 1-behaviour: 

( 6 .15) 

but the analysis of the prefactor is now rather complicated. 

From eq. (6.12) we note that the thermopower is strongly impuri­

ty dependent, due to the dependence of the position of the Fermi­

level. Also strong Coulomb correlations affect the location of 
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Fig. 6.2 Thermopower of 
TTF-TCNQ (batch IB7/MA 67) . 

the Fermi level, and thus the thermopower. For narrow-band 

semiconductors, the atomic limit, the kinetic term A in (6.12) 

vanish, and the asymptotical high-temperature thermopower is 

seen to be a matter of the Fermi-level location only. 

The location of the Fermi energy can be deduced 

from the number of electrons, and from the form of the distribu­

tion function. Since the states for highly correlated carriers 

are only singly occupied, but spin degenerated, the distribu­

tion function is not the usual Fermi-Dirac function, but has 

the form j 120 J 

[ 

£ - £ i-1 
f (E) = 1 + ~exp ( kBT F ) (6.16) 

for p < 1. The expression (6.16) can with advantage be rewrit­

ten in the form 
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E: - E' -1 

f ( E ) = [ 1 + exp ( kB T F) .1 (6.17) 

where £F is given by 

(6.18) 

Thus, the effect of the charge carrier correlation is to lower 

the Fermi-level by kBT ln2. By use of the Kubo-Greenwood for­

mula (6.8), the thermopower o~ strongly correlated charge 

carriers is then 

s = 
(6.19) 

kB 
= S

0 
- - ln2 

e ' 
p < 1 

where S is the thermopower of the system of "uncorrelated" 
0 

carriers. Eq. ( 6 .19) is based on the assumption that p < 1. For 

p > 1, the distribution function is given by jll9I 

[ 
£ - £F i-1 

f (£) = 1 + 2exp ( k T ) 
B 

(6.20) 

leading to the thermopower 

kb 
S = S0 + e- ln2 , P > 1 (6.21) 

Since generally the charge transfer in the organic salts is 

less than one, strong correlation effects will lead to an ad­

ditional temperature independent thermopower of kB/e · ln2 = 
60 µV/K for the donor chain, and -kB/e · ln2 = -60 ~V/K for 

the acceptor chain. The expressions (6.19) and (6.21) are inci­

dentally independent of the electrical transport behaviour, i.e. 

it may be metallic, semiconducting or hopping transport. 
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For an intrinsic semiconductor, for example, eq. (6.12) I (6.13) I 

(6.14) and (6.21) give the form 

kB 
[±ln2 

0 - 0 E 3 m 
+ A] s + 

e h 
~+ ln e (6.22) = - 4 -e 0 + oh mh e B 

for correlated charge carriers~ This is the same expression as 

that deduced by Conwell, using a simple two band model for 

p < 1. 11131. 

In a number of 2:1 complex salts, e.g. Qn(TCNQ) 2 , the thermo­

power shows a temperature dependence such as (6.22), saturating 

at a value close to -60µV/K 11261. This property has been ex­

plained in terms of the Hubbard model (6.1) with U
0 

>> kBT 

1120, 113, 1241. As these complex compounds have quarter filled 

bands, only the lower Mott-Hubbard (M-H) band is of interest. -

Further, as a nearest neighbor interaction, u1 , lead to a gap 

at the 1/4 band level, the compounds may be narrow band semi­

conductors with strong onsite Coulomb correlation, and as the 

gap is in the center of the lower M-H band, the two conducting 

bands must be rather symmetric with respect to bandwidths, 

scattering processes etc. Therefore, the latter three terms in 

(6.22) at reasonable high temperatures, vanish, in agreement 

with the experiments. 

Also some simple salts, e.g. NMP-TCNQ, with incomplete charge 

transfer, shows an asymptotical high-temperature thermopower 

of the order of -kB/e ln2. Since the charge transfer of NMP­

TCNQ is about 0.8 11201, the gap leading to semiconducting be­

haviour can not be due to u
1

. On the contrary, experimental 

doping results indicate a gap at the Fermi-level arising from 

electrostatic interchain interaction between charge density 

waves 11211. The deviation from the -kB/e ln2 value may be 

caused by unsyrnrnetric properties of electrons and holes, i.e. 

it is a result of the magnitude of the charge transfer. In fig. 

6.3 we show the experimental thermopower of Qn(TCNQ) 2 and NMP­

TCNQ ll26J, which distinctly exhibits the high-temperature satu­

ration. 

When the correlation effect becomes very strong, the Bloch-wave 

representation leading to the band-model is not valid anymore. 
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for Qn(TCNQ) 2 
and NMP-TCNQ. 

The physics must then be described in a site representation. 

In a first approximation, however, we still can represent the 

strongly correlated M-H semiconductor by a band model, but with 

bands of zero width. 

In the limit kBT << U, only the lower M-H band is occupied, 

provided p < 1. And as there is no "kinetic" contribution to 

the thermopower in a band of zero width, eq. (6.12) gives 

S(T-+ oo) = (6.23) 

where £~!) is the energy in the lower M-H band. In the other 

extremum, kBT >> U, both bands contribute to the conductivity. 

Provided the scattering mechanisms are the same, the thermopower 

then is 

S(T -+ 00 ) k T >> E B g 
(6.24) 

Following the arguments of Lewis 11191, we will now derive the 

thermopower of correlated charge carriers in the Mott-Hubbard 

semiconductor (6.1) using simple thermodynamic arguments and 

neglecting terms of U., j > 1. 
] 

In a band of "zero" width, all states have an equal probability 

of occupation, and in the limit U >> k T all carriers must be 
o B 
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in the lower band, provided p < 1. Thus, the charge transfer 
(1) 

must be equal to the distribution function at £b : 

f(£(1)) = 
b 

p, k T << U B o 
(6.25) 

Correspondingly, the distribution function in the limit U
0 

<< kBT, 

is equal half of the charge transfer, as the two band are equal­

ly occupied: 

k T >> U 
B o (6.26) 

From the form of the distribution function we may thus deduce 

the Fermi energy as a function of charge transfer, and thus an 

expression for the thermopower. 

i. Fermions in the kBT >> U
0 

>> t limit. 

In this region, the electrons are localized, but distributed 

randomly, i.e. are essentially noninteracting Fermions. The 

distribution function is then the Fermi-Dirac function 

f (E) 
£ - e:_r, -1 

= {l +exp( k T )} 
B 

and from (6.26) thi.s leads to 

£(1) £ £ (2) £ 

b F b· F ln ~ ~ 

kBT kBT 

The thermopower i.s consequently 

S(T-+ 00 ) = kb 2-P 
ln 

e P 

2-p 
p 

ii. Fermions without spin, in the U >> k T >> t limit. 
o B 

(6.27) 

(6.28) 

(6.29) 

The distribution function for highly correlated spinless charge­

carriers must be equal 1io thedistribution function for uncorre­

lated carriers with spin, i.e. the ordinary Fermi-Dirac factor 

(6.27). From (6.25) we then have the position of the Fermi level: 

1-p = ln p 
(6.30) 
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and thus, from (6.23), the thermopower 

S(T-+ 00 ) 
= - kB ln 1-p 

e P 
( 6. 31) 

Equation (6.26) represents the well known Heikes formula llll. 

It should be noted, however, that it is only physical applicable 

to systems in enormous magnetic fields, or to electrons paired 

with strong binding energy 11221. More frequently, the spin dege­

neracy must be taken into account: 

iii. Fermions with spin in the U
0 

>> kBT >> t limit. 

The distribution function for strongly correlated carriers with 

spin is that already discussed ( 6 .16) . For p < 1, we therefore 

have 

£(l) - £ = k T ln(2 l-p) 
b F B p 

(6.32) 

and then the thermopower 

S(T-+ 00 ) = kB 1· 1-pl - ln2 + ln 
e P J 

(6.33) 

The thermopower of the lD M-H semiconductor in the atomic limit 

(t << U
0

), has been deduced by a number of authors beyond those 

already mentioned 194, 110-113, 119-1241, leading to results 

@imilar to the forms (6.29), {6.31) and (6.33). For example, 

Chaiking and Beni 11221 used in the limit T-+ 00 , that the thermo­

power is a measure of the entropy per carriers. Since the entro­

py in that limit is given by the degeneracy of the states, the 

calculation was reduced to simple combinatorial problems depen­

dent only on the density of carriers and the interactions stron­

ger than the thermal energy. 

For more detailed calculations of the thermopower as a function 

of temperature, in the atomic limit, it is advantageous to use 

the Kubo-formalism 11251. Bari and Beni 1121, 1101 studied in 

that way the thermopower of the narrow-band M-H semiconductor, 

including only on-site Coulomb interactions, U , whereas Kwak 
0 

and Beni 11201 took into account arbitrary nearest neighbor 
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repulsion u1 • Ihle and Eifrig 11241 calculated the thermopower 

in the lD M-H model for U >> t, but included finite values 
0 

of both U and t. 
0 
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CHAPTER VII 

TECHNIQUE USED FOR THERMOPOWER MEASUREMENTS 

The thermoelectric power of a compound is basically measured 

by constructing a thermocouple arrangement, which consists of 

the sample and a suitable material with a well known thermo­

power (s1 ). The Seebeck emf. is then measured when one junction 

is raised ~T in temperature relative to the other: 

(7.1) 

S is the unknown sample-thermopower. One of two procedures is 

commonly adopted to obtain the temperature dependence of S. In 

one, a constant temperature bath is used to hold one junction 

at a known temperature, the other junction is varied in tempe­

rature and the total emf. measured as a function of T. To ob­

tain S, it is then necessary to differentiate the emf. versus 

T curve. Alternatively, the thermopower can be obtained direct­

ly by adjusting both junctions to the required temperature, 

and then heat one junction by a small amount ~T, measuring the 

small emf., ~V, so created. Both methods are capable of giving 

accurate thermopowers. The first, however, requires more data 

processing but the second requires at best three measurements, 

i.e. T, ~T, ~V, whereas only T and V are required in the for­

mer case. 

In studies of the transport properties of highly conducting 

organic compounds, including phase changes, the latter, diffe­

rential method is the only practical. Also the size of the cry­

stals, typical 1-5 mm in the stacking direction, and 10-100 µm 

in the two transverse directions, favour the differential method. 

In practice, the emf. as indicated by a precision potentiometer 

will include some stray steady thermo-emf .s generated in the 

leads to the measuring instrument. These can arise, for example, 

from inhomogeneityof the conductors and can lead to serious 

errors. 

To eliminate these stray emf .s in the ~V and ~T measurements, 

~T measured by a thermocouple, it is corrunon to use a slowly 
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alternating temperature gradient, and use the slope of the 

~V-bT plot, for example displayed on an X-Y recorder 1128, 1291. 

Another problem encountered in making thermopower measurements, is 

to make certain that the temperature gradient measured, is entire­

ly across the sample. To eliminate this problem, long and thin 

samples must be chosen, in order to get high thermal resistance. 

Apparatus. 

The apparatus used is a slightly modified form of that described 

by Chaikin and Kwak 11291 , which is based on the slow ac­

technique mentioned above. In Fig. 7.1 it is illustrated sche­

matically. The heart of the device is a set of two 12x9x4 mm3 

single-crystal quartz blocks, which have high thermal conduc­

tivity ensuring a reasonable short measuring time. One of the 

plane surfaces of each of the blocks, is covered with a Nickel­

Chromium (c. 80 Ni, 20 Cr) heating element of resistivity of 

the order of 1 kn. The Ni/Cr is evaporated directly onto the 

quartz. The form of the element is of a suitable pattern to 

ensure that the quartz blocks is heated as uniformly as possible. 

The two quartz-blocks are by phosphorus-bronze springs placed 

1-3 mm apart on a PVC substrate 1.5 mm thick. As a result of 

different coefficients of thermal expansion, it is not appro­

priate to glue the blocks onto the substrate. The PVC material 

is fastened with screws to a copper block, 3 mm thick, which 

serves as a heat sink. Finally, the copper block is screwed in 

a cylinder of copper so that the heart of the apparatus ef fec­

ti vely is enclosed in a region of well-known temperature. 

The whole system is located, either in the inner can of a con­

ventional variable temperature cryostat (I), on the cold finger 

of a variable temperature flow cryostat (II) or on the cold 

finger of a cooling machine (III). As the apparatus requires 

evacuated surroundings, the copper cylinder also serves as a 

vacuum shield in the cryostat I, whereas in the latter two the 

cold fingers are insulated by vacuum anyway. The temperature is 

electronically controlled by Oxford Instuments, DTC 2 in I and 

II and EA 2349 in III. The cryostat I is crudely controlled by 

taking a small flow of liquid helium from the main bath through 
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HEATER SAMPLE THERMO COUPLES 
PVC QUARTS BLOCK 

Cu. HEAT SINK 

l 

HEATER l:IT AVs T HEATER 

0- Represents long wires ensuring thermal insulation 

0 Represents Ge 7031 varnish 

Fig. 7.1 Apparatus used for thermopower measurements. 
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a needle valve and capillary tube to the heat exchanger, or by 

introducing a small amount of exchange gas to the vacuum between 

the helium vessel and heat exchanger. The flow-cryostat is 

roughly controlled by the choice of helium flow through the sy­

stem. The lowest tempeatures attainable at the quartz blocks is 

approximately 2K, 9K and 14K for the three cryostats I, II, and 

III, respectively. 

For the thermopower measurement, a 0.15 mm or .025 mm 99.99% 

pure gold wire is placed across the gap on the quartz blocks, 

and glued to them with Ge 7031 low temperature varnish, which 

ensure good thermal anchoring. The organic crystal to be measured 

is then placed on these two wires so that the needle axis is 

perpendicular to the goldwires and the wires are at the end of 

the crystal. Electrical and thermal contact is subsequently 

made by applying silver paint (Dupont 7941) with a piece of 

the gold wire, or a 0.065 nun thick copper wire. In some cases, 

Au contacts were evaporated onto the crystal. Thus the gold 

leads serve both as electrodes and as thermal conductors to 

transmit the temperature drop across the qhartz blocks to the 

sample. The size of the gold wires are a compromise between the 

requirements of large thermal conductance and flexible behaviour 

in order to allow the crystal to contract as the temperature 

is lowered. The leads are connected through a high impedance 

(maximum recormnended source resistance 30Kn) Keithley 140 Pre-

cision Nanovolt DC Amplifier to the Y-axis of an X-Y recorder. 

The temperature of the sample is measured with a chromel (KP) 

versus Au-0~07 at. pct. Fe thermocouple, mounted on one of the 

quartz blocks. As reference temperature a bath of liquid Nitro­

gen (77.3K) is used. The thermoelectric emf. is measured with 

a Keithley 174 Digital Multimeter, and is converted to the abso­

lute temperature by use of the data of Sparks and Powell 11301 

shown in Fig. 7.2. 

The small temperature drop between the two quartz blocks is 

also measured using a chromel versus Au-0.07 at. % Fe thermo­

couple, which is particular suitable because of the quasi con­

stant thermopower, shown in Fig. 7.2 a 11301 . Such behaviour 

is obtained by exploiting the increased low-temperature thermo-
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power of Gold following doping with a small amount of ferromag­

netic impurities (Fe), i.e. the Kondo effect described in chap­

ter 4.10. The induced thermoelectric voltage is measured with 

a Keithley 149 Milli-Micro Voltmeter, the analogue output from 

which is connected to the X-axis of the X-Y recorder. 

Of particular importance in this type of apparatus, is the time 

constants for reaching thermal equilibrium. The heat sink must 

come into equilibrium quickly. The thermocouples responding to 

the temperatures of the quartz blocks must also be fast, as 

well as the transfer from the quartz to the sample. Slow relaxa­

tion should occur from the quartz to heat sink through the PVC 

substrate and the number of leads, and from the quartz to quartz 

block through the thermocouple, the PVC and the sample. A suit­

able length of the leads is 20 cm for the 0.075 mm teflon coated 

chrome! wire and 30-40 cm for the 0.075 mm Au-0.07 at. % Fe and 

the 0.09 mm copper wires. 1131, 1321. The thermal relaxation 

time of quartz to quartz and quartz to heat sink is then typi­

cal a few minutes. 

All the leads are thermally connected to the heat sink at one 

end. Thus, although there are many contacts between different 

metals in the apparatus, and hence many sources of stray ther­

mal emf .s, the only junctions where temperature vary appreciable 

during the heating cycles are the Gold-sample junctions and the 

thermocouple junctions. The leads between the heat sink and the 

measuring instruments are all, except the thermocouple for ab­

solute temperature measurement, 0.09 mm Cu-wires. Outside the 

cryostat, the wires are screened individually in order to mini­

mize pick-up. 

For the thermopower measurement, a current is supplied to the 

heater of one quartz block so that the temperature over typical­

ly 30 seconds increases between 1/10 and 1/4 K depending on 

the S(T) behaviour. The current necessary for this heating is 

of the order of l mA, corresponding to power of l mW deposed in 

the heater, but it varies somewhat with the temperature. When 

the temperature increase has reached the desired value, the cur­

rent is switched to the second quartz block, and finally the 

first block may be heated again to ensure that the two blocks 
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are at the same temperature. The maximum temperature drop across 

the sample is then less than 1/5-1/2 degree K. 

In Fig. 7.3, typical X-Y recorder traces is shown. The traces 

come out as loops of variable hysteresis, dependent of the ther­

mal time constant of the quartz to sample connection via varnish, 

gold wires and silver paint,and the time constant of the quartz 

to KP-Au thermocouple via varnish. If the trace is not a closed 

loop, there is probably poor thermal contact somewhere. At low 

temperatures, the loop usually degenerate into a stright line 

as the thermal conductivity grows large and heat capacities get 

small. However, also a large sample electrical resistance may 

cause a large hysteresis, as a result of the increased rise 

time of the nano-volt meter. 

The slope of the linear regions of the curves is the thermopo­

wer of the sample minus the thermopower of gold, divided by the 

thermopower of the KP vs. Au-Fe thermocouple: 

Slope = 
s - s sample Au 

8KP vs Au-Fe 
(7.2) 

The thermopower of gold is taken from Huebener and Guenault and 

Hawksworth 1133, 1341, and is shown in Fig. 7.4. 

Data for the sample must be taken only when slopes for both 

signs of the temperature gradient are the same. The measurement 

thus represents an average thermopower over less than one-half 

a degree temperature interval. 

A major potential source of error in this type of apparatus is 

in determining whether the temperature gradient across the sample 

is e~al to the temperature drop measured between the quartz blocks. 

There may be an appreciable temperature drop along the gold leads 

as well as over the varnish and silver paint contacts. Also, if 

the sample chamber is not effectively evacuated, the thermal 

shortening by the surrounding gas can be a problem. An easy, but 

not definitive, test of these difficulties is to vary the length 

of the sample, and the pressure of the sample chamber. By vary­

ing the length, we change the thermal resistance of the sample 
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Fig. 7.3 Typical traces of thermocouple output versus 
thermopower differences between sample and gold leads. 
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Fig. 7.4 Thermo~ower 
of Au, j 133, 1341. 

(r ) and hence the temperature drop, since s 

6T sample = 
r 

s 6T 
rs + r

0 
quartz ( 7. 3) 

where r
0 

is the thermal resistance of the gold wires, varnish 

and silver paint contacts. Only if r >> r , we can trust the 
s 0 

measurements. The results shown in Fig. 7.5 shows a slight varia-

tion in a plot of S versus crystal length. Also there is some 

scatter, probably as a result of differences in the silver paint 

contacts. The experiment is conservative, however, as the cross 

section area is much larger than those used in the compounds in 

vestigated. The pressure dependence, Fig. 7.5, points out that 

the measurements should be done for P < 10-2 torr. 
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CHAPTER VIII 

THERMOPOWER MEASUREMENTS ON ORGANIC CHARGE TRANSFER SALTS 

In the present chapter we will present the thermoelectric power 

of a number of highly conducting organic salts. The discussions 

will be based on the theory already given, and the experimental 

values are measured as described in chapter VII. Along with the 

thermopower, the two probe sample resistance has been measured, 

as a control parameter. 

8.1 THERMOPOWER OF TTF-TCNQ 

The thermopower of TTF-TCNQ has already been discussed in de­

tail in the sections concerning transport theory. However, it 

will be discussed once more, but now from the experimental 

point of view. 

The samples used for thermopower studies were prepared at Phys. 

Lab. III, Tech. Univ. of Denmark. TTF-TCNQ single crystals 

were grown by diffusion in a solution of acetonitrile. 

In Fig. 8.1 the S(T) behaviour is given for a typical sample 

of TTF-TCNQ 11351. The linear S(T) behaviour at high tempera­

tures (T > 140K) should be noted. This result is one of the 

best pieces of evidence that TTF-TCNQ is metallic at high tem­

peratures. From the theoretical discussions above, this beha­

viour may be somewhat surprising, since many sources lead to 

deviation from linearity, e.g. the limited bandwidth (Fig. 3.4) 

and the scattering term in equation (3.66). The negative sign 

indicate that the conduction mechanism is dominated by elec­

trons, and since p < 1 that is the carriers on the acceptor 

chain (TCNQ) . 

It is clear from the data that there are phase transitions at 

about 38K and 54K, as also seen in the conductivity and magni­

tic behaviour. The thermopower indicates that the 54K-transi­

tion is sharp rather than gradual, and hence that we are not 

following· a-smooth transition from electron to hole 

domination. From the TEP we further should infer that the 

54K-transition is driven by the TCNQ-chain, in agreement with 

the EPR analysis of Tomkiewicz et al. ll36J. 
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In the region from 54K to 150K, there is a deviation from the 

linear T-dependence, with S increasing to a small positive 

value near the transition temperature. This is just the region, 

where diffuse X-ray scattering has shown that the coupled con­

duction-electron-lattice system fluctuates into an incommensu­

rate CDW which increases in amplitude and coherence length as 

the temperature is lowered to T ]1381. The combination of these 
c 

structural data, the large a /ORT-ratio and strong frequen-max 
cy dependence 136, 105J has by a number of authors been proposed 

as evidence for superconducting fluctuations in TTF-TCNQ near 

Tc Jl39j. The recent results of Andrieux et al. are probably 

the best "proof" of collective fluctuations, as they demon­

strate that commensurability pinning cause a substantial drop 

in conductivity Jl37j. 

It is well-known that the thermopower of a superconductor is 

zero. When fluctuations into a superconducting state are pre­

sent, we also should expect a vanishing or stronly decreased 

numerical value. The thermopower of TTF-TCNQ therefore does 

not contradict the theory of collective fluctuations below 

150K. On the other hand, since the TEP changes sign from the 

high temperature metallic state to the low temperature semi­

conducting, S must cross zero. 

Below the 54K-transition the thermopower is positive and in­

creases rapidly to approximately 30 µV/K (Fig. 8.lb). The sign 

implies that the conductivity is dominated by holes. Between 

the 38K and 54K transition temperatures, S is only weakly tem­

perature dependent, whereas a T-1 -behaviour is observed below 

38K, indicating semiconducting transport. The magnitude arid 

sign of the S(l/T) slope, are strongly dependent on crystal 

purity 11351. A corresponding deviation in the activated con­

ductivity behaviour never occur. The first TTF-TCNQ samples 

grown in our laboratory had a negative slope corresponding to 

Eeff= 16 meV (6.12), and S became negative again below 28K g 
11401. On the contrary, the subsequent samples showed positive va-

lues to the lowest temperatures attainable. The sample shown in 

Fig. 8.lb has an effective energy gap equal to 29 meV, which 

must be compared with the gap found from conductivity 
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measurements, Eg = 40 meV, setting Eg = 2EA. We believe that 

the latter samples are the single crystals of highest purity. 

Support for this is given by the rather general observation 

that S below T has the opposite sign of S at high T. Detailed 
c 

analysis, however, is rather complicated, as both chains repre-

sent a two-band semiconductor. 

In order to find out whether the electrical transport is domi­

nated by the TTF-band or by the TCNQ-band, we should know all 

four intrinsic conductivities in the compound (also see eq. 

3.44). Since we do not expect the scattering mechanism to vary 

appreciably from holes to electrons in the same chain, a dif­

ferent mobility must result from the band term, usually repre­

sented by the effective mass 

giving 

d2£ 
(m~)-1 = 11 -2 __ k 

dk 2 

µ = 

(8.1) 

(8.2) 

To simplify such calculations for TTF-TCNQ, we will.for a mo­

ment assume that p = 2/3 rather than .59, thus resulting in 

the trimerized semiconductor discussed in chapter 2. For that 

system, we found the dispersion relation 

e(K) = wcos/~ Arccos(u cos kb) + j 
2;/ ( 8. 3) 

where j = 1,2,3 and w and u are given by the transfer integrals 

(2.11). From (8.1), this relation lead to the mass ratio 

= 
[

sin j Arccos(-u) + 
·1 

sin 3 Arccos(-u) + 

41T 
3 
27T 
3 

(8.4) 

where a = 1 for a TCNQ-like system, and a = -1 for a TTF system. 

In the tabel below,· we shCM the calculations for bands with the 

right bandwidths, and baridqapscorresponding to that observed 

in conductivity behaviour. 
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Table 8.1 Mass-ratio calculated by use of (8.4) 

TTF 

TCNQ 

t 
eV 

. 06 3 

.125 

cS 

eV 

• 0 3 

.03 

t:g 
meV 

41 

40 

1.3 

.89 

In an intrinsic semiconductor, the conductivity ratio is given 

by the masses 

( 8. 5) 

Thus, the effective gap (6.14) should be reduced to approximately 

10% of the true gap in TTF-TCNQ. This is inconsistent with the 

experiments. We therefore conclude that the compounds are not 

intrinsic, but impurity dominated. This also accounts for the 

large sample-dependence observed. 

An experimental study of these properties should be done by 

doping-experiments, which vary the physical parameters of one 

chain at a time. Chaikin et al. have investigated TTF-TC~Q 

compounds doped with! TSeF and ii MTCNQ 187,1411. In both 

cases they find a changed low-temperature behaviour, compared 

to their pure 'I'TF-TCNQ sample. However, in all samples they 

find dS/d(l/T)<O. Based on the discussion above we therefore 

believe that the compounds used were of too poor quality to 

make a systematic low-temperature study. (It should be noted 

that all the conclusions of Chaikin et al. are based on the 

high temperature behaviour, which on the contrary is very little 

dependent on sample quality). 

We have made some preliminary thermopower studies of TTF-TCNQ 

doped with tetrathiafulvalene S-oxid (TTF-ox) jl42J. Since 

TTF-ox has a size similar to TTF, it is very useful as a "do­

nor impurity", in order-to investigate the physical properties. 

Further, as TTF-ox is always present in TTF that has been ex­

posed to oxygen, a known (TTF-ox)/(TTF) ratio may help in iden­

tifying the role the oxydization plays as impurity centers. 
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Four-probe conductivity measurements showed almost no effects, 

and it was concluded then by Carlsen et al. that the S-oxid is 

not of major importance for electric conductivity I 142 I • Contrary to 

that we find a significant change in the low-temperature ther­

mopower, whereas the high-temperature value and transition tem­

peratures are almost unaffected (Fig.8.2). Thus the different 

thermoelectric behaviour found in TTF-TCNQ samples may 

well be a result of the oxidation. 

In Table 8.2 we show the effective energy-gap found from the 

S(l/T) slope below 30K. The results are based on only one samp­

le from each batch, and as the gap varies somewhat from sample 

to sample in the same batch, it should be taken with some cau­

tion. However, the tendency is evident: As the impurity concen­

tration is enhanced, the effective energy-gap, Eg,eff = (cre-crh)/ 

(a +crh)E , indicates that the electron conductivity rises com-e g 
pared to the hole conductivity. 

Table 8.2 Effective energy-gap as a function of impurity con­

tent. 

(TTF) l•x (TTF-ox) x - (TCNQ) 

x 

E g,eff 

0 

29 

.0003 

22 

.010 

5 meV 

Several explanations are possible for this behaviour. 

i. The impurities enhance the scattering rate of carriers on 

the TTF-chain, resulting in a decreased conductivity, i.e. 

a ~ ah (TTF) 

a ~ a (TCNQ) 
e 

for pure material 

for doped material 

ii. The impurities "enhance the number of free electrons in the 

TTF-band, by introducing an impurity band: 
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cr ~ crh (TTF) or crh (TCNQ) 

cr ~ cr ( TTF) 
e 

for pure material 

for doped material 

The first of these explanations is perhaps the most plausible, 

s~nce there is no effect on the activation energy seen in the 

conductivity plot Jl42, 135]. It should be noted, however, 

that the .03%-sample has a very sharp 38K phase transition. 

The cr /crRT ratio was found to be rather large, 25, in samp-
max ~ !,, 

les from that batch. I ,11 J • Both of these facts indicate a very 

small amount of impurity. We therefore apparently should ex­

clude the presence of TTF-ox in the TTF-TCNQ lattice, and 

suggest that only the very outer parts of the crystals are 

oxidized. The very drastic effect on the 0.1%-crystal could 

be an effect of poor crystal quality. This quality is probab­

ly not a specific effect of the S-oxid, but rather reflects a 

tendency for crystals to be of poor quality when grown in 

impure media. 

Additional support for the first explanation that holes on 

TTF dominate in pure crystals, is found in the opposite signs 

of S above and below T . Since the TCNQ chain is dominating 
c 

at high T the interactions will tend to be stronger here, and 

a bigger energy-gap will appear in this band. At low tempera­

ture the TTF-band with the smaller gap will dominate the con­

ductivity and therefore the thermopower. 

8.2 THERMOPOWER OF SOME ALKYLATED DERIVATIVES OF TTF-TCNQ 

AND TSF-TCNQ: 

TMTSF-TCNQ, DEDMTSF-TCNQ, TMTTF-DMTCNQ, TMTSF-DMTCNQ and 

TMTSF-DMTCNQl -MTCNQ -x x 

In order to learn more about the quasi one-dimensional metal­

lic state, a number of derivatives of TTF-TCNQ have been 

synthesized, with a range of crystal structure parameters. 

The substitution of sulphur with selenium, giving TSF-TCNQ, 

leads to increased prbital overlap in the donor stacks and 

results in comparable conductivities in the two subsystems 

1611 ~ Alkylation in available positions on donors and accep­

tors, on the other hand, may serve as insulating steric 
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spacers, and in that way decrease the interchain Coulomb coup­

ling and orbital overlap ll43J. However, it will also create 

minor changes in the ?mount of charge transferred from donor 

to acceptor in the solid, and in the intrastack overlap. More­

over, it ppears that the distance between the atoms on the 

two sets of stacks do not always increase by the alkylation. 

For example, HMTSF-TCNQ, has a 2% smaller interchain distance 

than TSF-TCNQ 1481. In fact, the interchain interactions in 

HMTSF-TCNQ are so strong that the material approaches a 30 

semimetallic state at low temperatures ll44J. 

In the present part, we will discuss the transport properties 

of some alkylated derivatives of both TTF- and TSF-TCNQ salts 

based mainly on the thermopower results. All the crystals 

are prepared at Ris¢ Nat. Lab. and the H.C. 0rsted Inst., by 

slow evaporation of solvent from saturated solutions j29l. 
The molecular structure and names of constituent molecules 

are shown in Fig. 8.3. 

H3C~s>=<sJ(CH3 H3cXse seXCH3 CH3-CH2XSe SeJ(CH3 

I >=< I I >=\ I H3C S S CH3 H3C Se Se CH3 H3C Se Se CH2CH3 

TMTTF TMTSF Trans - DEDMTSF 

NC~CN 
CH3 CH3 

NC>Ot N~~CN 
NC - CN NC - CN NC - CN 

H3C 
TCNQ MTCNQ DMTCNQ 

Fig. 8.3 Molecular design 

All the crystals are black shiny needles, but of different 

qualities and mechan~cal properties. The selenium salts are 

clearly of higher quality than the sulphur analogous. The 
3 TMTSF-TCNQ samples are prismatic, about 2xo.2xo.os nun . They 

are quite brittle, but easily cut to desired dimensions. 
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TMTTF-DMTCNQ, TMTSF-DMTCNQ and DEDMTSF-TCNQ tend to grow in 

assemblies and are severely damaged when cut. They do not break, 

but are deformed 'just like a bunch of fibers. DEDMTSF-TCNQ is 

only available as very thin crystals with cross sections typi-
2 . . 2 

cal 20x30 µm , whereas the DMTCNQ salts are about O.lxO.l mm . 

In Figures 8.4-8.8 and in Table 8.3, the conductivity and 

thermopower are shown for typical samples of the four alkyl 

substituted compounds. 

The overall conductivity behaviour is very similar to what is 

found in other members of this class of compounds: Increasing 

conductivity with decreasing temperature and a relatively sharp 

maximum followed by a Metal-Insulator (M-I) transition below 

lOOK. The conductivity of the selenium compounds is somewhat 

enhanced compared to the sulphur salts. A comparison is espe­

cially relevant for the two isostructural S-Se analogous TMTTF­

and TMTSF-DMTCNQ l29j, where the difference in room temperature 

values is a factor of four. This feature is a result of the 

larger size of Se compared to S, and hence a larger intrastack 

overlap between donor molecules.From the positive sign of the 

high temperature thermopower for all the Se-compounds, we can 

conclude that the donor stacks have even become electrically 

dominating, in contrast to the acceptor being dominating in 

S-compounds. This is a general behaviour for all the investi­

gated organic two-chain systems, until now. 

The thermopower for the three Se containing salts are somewhat 

similar with small positive room-temperature values and linear 

S(T) segments above lSOK, indicating bandlike metallic conduc­

tivity. Below approximately 150K, nonlinear behaviour is ob-

served, and in the region of M-I transition, sudden change 

in slope are found. Below the transition temperature, the com­

pounds are semiconducting. In contras.t S (T) for TMTTF-DMTCNQ 

has a high, nearly constant negative value from 100-300K. 

Together with the low absolute conductivity at ambient tempe-_ 

rature, this is an indication that this salt must be placed in 

a non-bandlike transport regime. 

The transition temperatures (Tc) are easily identified from 

TEP measurements, and are equal to the value obtained by the 
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Table 8.3 Transport properties of some alkylated derivatives of TTF-TCNQ 

TMTSF-TCNQ DEDMTSF-TCNQ TMTSF-DMTCNQ TMTTF-DMTCNQ 

cr ( 300K) -1 I "C cm) I 1000 500 400-600 120 
a 

cra/crb, (300K) 100 ? 200-300 ? 

cr /cr (300K) 250 ? 200-300 ? 
a c 

cr /cr (300K) 7 9 10 3 
max 

f-1 

IKI T(crmax) 65 55 47 80 tv 
U1 

E :t lmeVI 14.7 ? 12.5 19.8 
a 

s ( 300K) jµV/KI 8 18 11 -32 

f). ;:.;:. I meV I { 3. 2 <0.2 { 3.4 ·<11.5 
7.8 10.00 

T IKI 57 28 42 39.51 
c 

Dominating chain at 300K Donor Donor Donor Acceptor 

/\./a 
;:.;:.:t 1.1 ? 0.7 0.15 

--
:t Activation energy defined from conductivity, eq. 6.2 

;:.x Activation energy defined from thermopower, eq. 6.12 

;:.;:.;:.Relative mean free path, given as /\./a= nnbccr/4e 2a ]29J 
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normal definition of the temperature of maximum d(logcr)/d(l/T). 

All the Se-salts show one phase transition only, whereas TMTTF­

DMTCNQ shows two transitions. 

We will now discuss the four compounds one by one. 

TMTSF-TCNQ 

The thermopower of TMTSF-TCNQ is small and positive (S(300K) = 

8 µV/K), and approximately linear in temperature. The sign sug­

gests donor stack dominance in the conductivity, but the TCNQ 

stack may contribute with a non negligible term. The linear 

segment of S extrapolates to negative values at low T: 

S ~ S + AT, 
0 

s ~ -5 µV/K and A= 0.043 µV/K 2 . 
0 

(8.6) 

Such a behaviour, as well as the deviation from linearity just 

above Tc' can be qualitatively understood as resulting from 

different temperature dependences of donor and acceptor stack 

conductivities, even when the intrinsic S(TMTSF) and S(TCNQ) 

are both proportional to T. To explain the data, the TCNQ stack 

conductivity must be assumed to rise faster as the temperature 

is lowered than the donor stack conductivity, according to the 

sum rule, eq. 3.44. Support for such an interpretation has pre­

viously been suggestes by us j29j to come from the fact that 

the normalized conductivity in TMTTF-TCNQ rises more rapidly 

(omax/oRT = 15) ll47J than in TMTSF-TCNQ. However, at low tem­

peratures (T < BOK), the TEP data of Cowan et al. ll46J show 

that the low temperature conductivity of the S-salt is domina­

ted by the donor stack and not by the acceptor stack ~s proposed 

in ref. 29. Further, the comparison between TMTTF-TCNQ and 

TMTSF-TCNQ is somewhat doubtful, since the S and Se analogues 

are not isostructural jl48, 1491. 

Another explanation for the negative S -value could be the 
0 

theoretical deviation from linear S(T) behaviour in tight bind-

ing bands of very small bandwidth (see Fig. 3.4), or the addi­

tional constant thermoelectric power term arising from correla­

tion effects, provided strong onsite Coulomb repulsion (see 

chapter 6). We expect such characteristics to be mainly a proper­

ty of the acceptor chain. 
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The deviation from linearity below 150K could be due to col­

lective fluctuations, corresponding to the discussion for TTF­

TCNQ, but can as well be explained by the temperature dependent 

aA/a
0

. Moreover, the increasing TEP by lowered temperature can 

be a result of single particle phonon-drag. 

At Tc = 57K, a sharp change in the S(T) slope indicate the M-I 

transition. Below T , S is negative and two linear segments c 
are found in the l/T plot (Fig. 8.5b): Down to 45K the corres-

ponding activation energy 

_ e h -9: 
l

a - a I E 
!::i - . a e + ah · 2 

( 8. 7) 

is 3.2 meV, and below 45K !::i = 7.8 meV. Both energies are 

smaller than E = 14.7 meV derived from conductivity, in agree-a 
ment with our expectation from (6.2) and (6.12). The change in-

to higher activation energy at about 45K may be due to a tran­

sition from being an intrinsic semiconductor to an extrinsic, 

as the number of impurity-introduced carriers exceeds the num­

ber of intrinsic carriers. 

DEDMTSF-TCNQ 

The thermopower of DEDMTSF-TCNQ is small and positive, 18 µV/K 

at 300K, and linear in temperature down to 180K. Hence the 

salt is metallic at high T, and dominated by the donor stacks. 

The somewhat larger absolute TEP of DEDMTSF-TCNQ compared to 

TMTSF-TCNQ is attributed to a smaller bandwidth in the former, 

caused by the substitution of rather bulky ethyl groups. The 

chain-axis lattice constant in the latter salt is 3.88 A 11481 

as compared to 4.0 A in the first llSOj. A difference in charge 

transfer could also give rise to enhanced thermopower, but the 

important role of bandwidths is supported by the conductivity 

data, as aRT (DEDMTSF-TCNQ) is only half the value of aRT(TMTSF­

TCNQ) . 

The linear high temperature segment of S extrapolates to nega­

tive values at low T, 

S = -7 µV/K + 0.083 µV/K 2 
x T , T > 180K (8.8) 
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This behaviour must qualitatively be understood on the basis 

of the discussion concerning TMTSF-T~NQ, as a result of tempe­

rature dependence of 0A/cr
0 

or possible Coulomb correlations on 

the TCNQ stack. Below 180K, a deviation from the linear S(T) 

behaviour is seen, resulting in an increasing thermopower with 

decreasing temperature below BOK. 

The donor stack consists of both the cis and trans forms of 

DEDMTSF molecules. The random stacking of these molecules 

cause static disorder in the donor subsystem, and probably 

affects the acceptor stacks too. This disorder has been proposed 

to give rise to the total smearing of a(T) in the transition re­

gion j29j, and might as well be the origin of the anomalous 

S(T) behaviour. The sign of the thermopower, 6s, additional to the 

linear term is positive. If S is only diffusive and bandlike, 

this should indicate that the donor stack dominance has been 
t 

enhanced by the disorder. But this is in disagreement with our 

expectation of the disorder being of greatest importance on 

the donor stack itself. It seems more reasonable that 6S is 

a matter of the scattering term in eq. (3.66). As discussed in 

chapter 4.10, impurity scattering should enhance the TEP, pro­

vided T(s) increase with a power of s larger than zero. 

Another origin ·-for the enhanced thermopower below 180K, could 

be the properties of the intra and inter chain coupling. The 

disorder may give rise to changed effective overlap, probably 

resulting in a decreased t.,/t.L-ratio. The system has thus be-

come more three dimensional, and in view of the discussions in 

in chapter 2, we will expect opening of gaps at the Fermi sur­

face, somewhat like the state known from HMTSF-TCNQ J43j. Thus, the 

mater_ial tend to be semimetallic, with the ensuing large ther­

mopower. 

At 28K, there is a break in the S(T) slope, best seen in the 

l/T plot shown in Fig. 6b. The break takes place where there 

is a maximum slope in ln o versus l/T, and we identify it as 

a Peierls transition. Below the transition temperature, we 

find semiconducting behaviour, but the activation energy is 

not well defined. 
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The high-temperature thermopower of TMTSF-DMTCNQ is very simi­

lar to the two other Se-compounds, with a small, positive room­

temperature value, indicating donor dominance, and with a linear 

segment down to 140K, extrapolating to negative values at low 

T. Roughly, S(T) can be written 

S ~ -4 µV/K + 0.05 µV/K 2 • T, T > 140K (8.9) 

At 140K, a sudden drop in the slope of S versus T takes place. 

This is just at the temperature region, where recent diffuse 

X-ray scattering experiments have indicated a phase transition 

as related to 3D ordering of the 4kF charge density waves 11511. 

A corresponding anomaly is not seen in the conductivity be­

haviour (Fig. 4), nor in the magnetic data jl52j. The origin 

and possible connection between the TEP and X-ray experimental 

facts are still unknown. It should be noted, however, that 

it is also around 140K that short range transverse order builds 

up significantly for the 2kF modulation waves jl5ll. 

The diffuse X-ray data moreover give the magnitude of charge 

transfer. For TMTSF-DMTCNQ it appears to be 0.5 11511. 

Andrieux et al. have by recent experiments on TMTSF-DMTCNQ 

under pressure found anomalies which by first sight look very 

similar to that at 140K at ambient pressure jl53j. However, 

they find a corresponding S-shape anomaly in the conductivity 

data, and further, this anomaly is seen only above approxima­

tely 7 kbar, where the CDW probably has been effectively 

depinned. The data were in jl53 jattributed to a 

structural phase transition between two metallic states, 

without any significant modification of the lD character. 

Below BOK a new deviation in the TEP is seen. Since a cor­

responding behaviour is found in the S-analogous compound, 

this property is a~tributed to poorly conducting acceptor 

stacks (see the decomposition below). At T = 42K, a Peierls c 
transition take place, primarily driven by the donor stacks. 

This is in agreement with the magnetic analysis ll52j. Below 

Tc' the material is semiconducting. Down to 35K, there is a 

linear S(l/T) segment corresponding to ~ = 3.4 meV, and 
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between 22K and 35K S is again linear in l/T, but with ~ = 10 

meV. Both ~·s are smaller than Ea= 12.5 meV derived from con­

ductivity. Below 22K, the conduction is presumably dominated 

by impurities. 

TMTTF-DMTCNQ 

The transport properties in TMTTF-DMTCNQ are drastically dif­

ferent from those in the selenium analogues discussed above. 

The conductivity is rather low, corresponding to a mean free 

path small compared to the intrachain lattice constant j29j, 

and the thermopower shown in Fig. 8.8 does not have the cha­

racteristic S - T behaviour. These features place TMTTF-DMTCNQ 

in a regime of localized electrons, where transport takes place 

by diffusion j29j. Such localization can be a result of small 

polaron formation (see chapter 6), which has the effect of 

exponential band narrowing. 

The TEP of this low-mobility compound is approximately con­

stant, S ~ -30 µV/K, down to lOOK. Qualitatively, such a be­

haviour is known from systems of highly correlated electrons, 

where one finds an asymptotical constant high temperature TEP 

dependent only on the interactions stronger than kBT and on 

the charge transfer (see chapter 6). The slight, but reprodu­

cible curvature seen above lOOK is attributed to the tempera­

ture dependence of aA/a0 . As p < 1, the negative sign of S 

suggests that the acceptor chain dominates the electric con­

ductivity. In previous papers J29, 861 we assumed that 

aA/a0 >> 1, so that our experimental findings were equal to 

the intrinsic DMTCNQ values. From the magnitude of the thermo­

power, we hence derived the charge transfer by use of the 

equations (6.29) - (6.33) for TEP of correlated carriers. De­

pendent of the U /kBT ratio. U being the onsite Coulomb re-
o 0 

pulsion, we found p between 0.59 and 0.83. 

·until now, there has not been any experimental data for TMTTF­

DMTCNQ, which refute these estimations. On the other hand, we 

know from several S-Se analogous compounds . that the charge 

transfers are nearly equal in pairs, e.g. for TTF-TCNQ and 

TSF-TCNQ pis 0.59 ·jl07J and 0.63 ll54j respectively, and for 

HMTTF-TCNQ and HMTSF-TCNQ pis 0.72 11551 and 0.74 11541. 

Especially in the region of one half the charge transfer tends 
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to be exactly 0.5 Jl56j. Thus, we now believe that 

p(TMTTF-DMTCNQ) ~ p(TMTSF-DMTCNQ) = 0.5 (8.10) 

But a charge transfer of 0.5 gives in the large U limit a 

thermopower of 60 ·µV/K. Assuming strong Coulomb correlation 

in each of the two types of stacks, we can then derive the 

aA/aD ratio, and thus the absolute intrinsic conductivity: 

. s 
D 

Taken S = -30 µV/K and SA = -SD = -60 µV/K, we get 

provided U
0 

>> kBT >> t for each band. 

(8.11) 

(8 .. 12) 

Below lOOK, Isl decreases rapidly reaching zero at SOK, where 

an anomaly is seen in S as well as in a. The rather narrow 

temperature regime, where S goes to zero is consistent with 

the interpretation developed for transport. The thermal dis­

order given the diffuse character of the conduction process 

does not allow development of any order until at a fairly low 

temperature. But as band behaviour is approached the 2kF in­

stability develops. Presumably the order is primarily develop­

ing on the acceptor stacks like in TTF-TCNQ, so that the or­

dering is not complete until around 40K, where the second 

anomaly is seen. This behaviour is very similar to that found 

in TTF-TCNQ. 

Below T , the compound is semiconducting, but without a well c 
defined activation energy, ~. This is probably caused by poor 

crystal quality. 

8.3 DECOMPOSITION OF TRANSPORT PARAMETERS IN TMTSF-DMTCNQ 

AND TMTTF-DMTCNQ 

Both the TTF-TCNQ salt and the four alkylated derivatives dis­

cussed above contain the two subsystems, donor and acceptor 

stacks, which are more or less independent. We have already 

given some qualitative interpretations concerning the role of 
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the individual subsystem. e.g. the high temperature and phase­

transition driving dominans of acceptor stacks in the sulphur 

salts and of donor stacks in the selenium salts. But in order 

to test the different transport models given in chapter 4, 

for example, detailed knowledge of the intrinsic transport pa­

rameters is necessary J86J. An essential basis for a decompo­

sition is that the two chains are effectively decoupled. Then 

we have (see chapter 3.4) 

(8.13) 

(8.14) 

where A and D indicate intrinsic values for acceptor- and 

donor-stacks respectively. 

Before attempting a decomposition, one may raise the question 

whether a specific kind of stack will have the same intrinsic 

parameters, ~ and S, in different materials, provided the in­

trastack overlap and charge transfer are unchanged. This clear­

ly depends on what scattering mechanisms are dominant. If the 

scattering is mainly due to intramolecular vibrations, then 

the behaviour of a specific donor stack should only depend on 

the charge transfer, and if movements of the molecules as a 

whole are involved in the electron scattering, the stack ar­

rangement may be quite important. Considering isostructural 

compounds, however, we do expect the intrinsic parameters to 

behave approximately in the same way. 

The two S-Se analogous DMTCNQ salts fulfil these conditions. Thus 

we claim 

aA(TMTSF-DMTCNQ) ~ aA(TMTTF-DMTCNQ) (8.15) 

and 

SA(TMTSF-DMTCNQ) ~ SA(TMTTF-DMTCNQ) (8.16) 
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Based on the indication of strong Coulomb correlations in 

TMTTF-DMTCNQ, we already have made the high temperature de­

composition: 

SA(TMTTF-DMTCNQ) ~ -s
0

(TMTTF-DMTCNQ) 

~ -60 µV/K (8.17) 

The nearly constant extrinsic thermopower above lOOK indicate 

that crA and cr
0 

have approximately the same temperature depenaen­

de, equal to that of the total conductivity, a ~ T- 1 · 3 . Thus, 
-1 -1 

since S = -30 µV/K and a = 120 n cm : 

crA(TMTTF-DMTCNQ) ~ };(TMTTF-DMTCNQ) 

cr
0

(TMTTF-DMTCNQ) ~ ~cr(TMTTF-DMTCNQ) 

~ 

~ 

T 
90 n-1cm-l~(300K)-l. 3 

(8.18) 

T 
30 n-1cm-l·(300K)-l.) 

(8.19) 

As the phase transition was supposed to be driven mainly by 

the acceptor stack, we believe that the thermopower in the re­

gion T -lOOK reflects the intrinsic DMTCNQ behaviour, but a 
c 

decomposition in this regime is probably not allowed. 

Now, let us look at the selenium salt, TMTSF-DMTCNQ. According 

to the discussion above, we know the intrinsic transport para­

meters of the DMTCNQ stack, and by use of (3.47a) and (3.47b) 

it is simple to calculate the values for the TMTSF stack too. 

The results are shown in Fig. 8. 9. 

At high temperatures (T > 140 K), the intrinsic thermopower 

for the TMTSF-stack is seen to be given by 

S(TMTSF) ~ 0.78 µV/K 2 
x T (8.20) 

Such a linear behaviour is just what we would expect for a 

metallic band, using the tight binding formula (see chapter 

3. 6) • 
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2n
2 

kB kBT [cos(np/2) + W !'] s = - -3- e w 2 2 L 

-sin (np/2) 
(8.21) 

For all the theories of mobility given in chapter 4, we found the 

sign of the scattering term in (8.21) equal to the sign of the band 

term. Thus (8.20) and (8.21) give a lower limit for the bandwidth 

W(TMTSF) > 0.86 eV (8. 22) 

as p = 0. 5. The discussions given in chapter 4 suggest, however, 

that the T'/T term is of the same magnitude as the band term, 

thus giving a bandwidth twice as¥ large as the one in (8.22). 

This is in good agreement with the value estimated from opti­

cal data j29I. Using a tight-binding approximation one gets 

from the plasma frequency, w = 9030 cm-1 , the bandwidth p 

W(TMTSF) ~ 1.2 eV (8.23) 

provided of the acceptor band is totally disregarded. 

Below 150K the decoupling seems t) show that the 140K-anomaly 

is connected to the TMTSF stack, whereas the increasing TEP 

below 80K is due to the DMTCNQ stack. However, the decoupling 

in this region may be upset by fluctuations. 

A justification of the decomposition above 140K is given by the 

analysis of TMTSF-DMTCNQ salt doped with MTCNQ. The doping is 

not expected to change the structure, charge-transfer or trans­

fer integrals appreciably. But the introduced disorder may 

reduce the conductivity 6n the doped DMTCNQ stack. Thus the 

doped compound should behave approximately as the intrinsic 

TMTSF stack. This is just what is found. 

TMTSF-DMTCNQO.?SMTCNQ0 . 25 

The room-temperature conductivity of TMTSF-DMTCNQ
0

.
75

-MTCNQ0 _
25 

is 

only reduced 10~20% compared to the pure salt TMTSF-DMTCNQ. MTCNQ 

is known to have important effects on the electronic properties 

ll57j, and the introduction into the DMTCNQ stack is expected 

to severely limit the intrinsic mobility of tl1e acceptor band, 

whereas the donor band is only slightly affected. Thus, the 

measured conductivity of the doped compound should approach 
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the intrinsic donor conductivity. This is confirmed as the 

measured a is equal to cr
0 

found by decomposition. 

In Fig. 12 we show the influence on the thermopower of doping. 

S is shifted to higher values at high ternperaturee; and is 

approximately linear in T, S = A • T, in accordance with the 

metallic behaviour of s
0 

found by decomposition. The absolute 

value of S is somewhat smaller than the decomposed value, 

probably a result of the rather large intrinsic SA which still 

may have an influence on S, although crA/cr
0 

<< 1. 

S(T} deviates from the simple linear temperature behaviour 

below 200K, exactly where the normalized conductivity starts 

falling below that of the undoped system (Fig. 8.10}. This is 

obviously an effect of the introduced disorder, which via 

randomly oriented dipole fields also may affect the donor stack. 

The qualitative S(T} behaviour is very similar to that found 

in DEDMTSF-TCNQ (Fig. 8.6}, which also was attributed to dis­

order. For more detailed discussions, we will refer to the 

treatment of the latter compound. 

At temperatures below T , the effect of doping is to enhance 
c 

the normalized conductivity by approximately one order of mag-
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nitude compared to the undoped compound. In the conductivity 

plot, Fig. 8.10, the phase transition seems to be somewhat 

smeared out, but from the thermopower data, Fig. 8.11, it is 

still possible to obtain a well defined transition tempera­

ture, 

which is somewhat lowered compared to Tc of TMTSF-DMTCNQ. 

Below Tc we find a small gap semiconductor with an effective 

energy gap 

cr(TMTSF-DMTCNQ0.75MTCNQ0.2s> = 0.4 meV 

Apparently the disorder has created impurity levels in the 

band gap. 

-8.4 THERMOPOWER OF THE SALTS (TMTSF)2-x, x = PF6 , AsF6 , 

SbF6-, N0 3 and BF4 , DERIVED FROM TETRAMETHYLTETRASELENA­

FULVALENE (TMTSF) • 

Single crystals of the solids, (TMTSF) 2-x, were prepared at 

the 0rsted Institute by electrochemical oxida~ion of neutral 

TMTSF in CH 2c1 2 at constant current 1311. These systems should 

be attractive in testing the various transport theories as 

they have only one conducting chain. Detailed analysis has been 

obtained for each salt, resulting in perfect 2:1 stoichiometry 

1311. Thus the charge transfer is 0.5, and the CDW set up are 

commensurable with respect to the lattice. The structure is 

characterized by uniform donor stacks in sheets, separated by 

anion sheets. The donor molecules repeat by a pseudotransla­

tion of period a/2 along ~, and are nearly perpendicular to ~· 

They seem to be overlapping synunetrically, thus giving rise 

to 3/4 filled bands, in contrast to the very similar sulphur 

compound (TMTTF) 2-Br 11581, which is dimerized. 

In Table 8.4 and Fig. 8.12 and 8.13 the transport properties 

of the compounds are summarized. Room-temperature conductivi­

ties range from 500-800 (ncm)-1 . At high temperature (T>lOOK) 
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-
Tabl: 4 Tr:nspor~ prop:rties of (TMTSF) 2x, X ~ PFg, 

AsF 6 , SbF6 , N0 3 , BF4 . 

x PF
6 AsF~ SbF 6 N0

3 
BF 4 

a (300K) -1 540 430 780 540 I Wern) I 500 a -1 
0.1.l (300K) I (&1cm) I 1.5 

o.i: 2 (300K) I (&1cm) -11 0.015 

S ( 300K) lµV/KI 23 19 19 25 25 

T c IKI 19 15 17 12 39 

w* jevJ 0.9 1.1 1.1 0.8 0.8 

*) The bandwidth W is derived from the high-temperature 

thermopower, neglecting the scattering term. 

the resistivity can be fitted to p = p + bT 2 , with p close 
0 0 

to zero, indicatinq good crystal quality·. The a~isotropy is 

300 and 30. 000 at 300K for the two transverse di·::ections respec­

tively, and increases rapidly with decreasing temperature Jl59, 

311, thus confirming the one-dimensional nature in accordance 

with the structural features. 

In Fig. 8.14 we show the thermopower of the five compounds. 

The small room-temperature values, ranging from 19 to 25 µV/K, 

and the linear S(T) behaviour extrapolating to a value near 

zero at o°K, reveal simple band conductors. One should notice 

the extremely regular S(T) curve down to only a few degrees 

above the transition temperature. Only a slight curvature against 

smaller S is seen, similar in all the materials. This could be 

indicative of enhanced influence of collective phenomena, but 

may as well be due to the T'/T-term in (8.24), or to the non­

vanishing kBT/W-quantity (see Fig. 3.3). Although there is no 

detailed theory fo! phonon-drag effects in lD systems (see chap­

ter 5 ), we see in the TEP data no features reminiscent of 

appreciable single particle drag effects. 
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By use of the lD tight binding formula, eq. 3.67, which for 

p = 3/4 becomes 

S(T) (8.24) 

we can estimate the magnitude of the bandwidth. Since (-T'/T) 

for p > 1 is expected to be positive (see chapter IV ), we 

get the lower limit of the bandwidth, w, between 0.8 ev and 

1.1 eV.· The correct bandwidths are probably between this 

value and a value twice as large. For (TMTSF) 2-PF6 , optical 
-1 

measurements show a plasma frequency of 10050 cm , corres-

ponding to the bandwidth, W - 1 eV, in good agreement with the 

value derived from TEP. 

The low-temperature transport properties of the (TMTSF) 2-BF4 
compound differ distinctly from the other four materials. At 

39K, (TMTSF) 2-BF4 exhibits an extremely sharp phase transition 

into an insulating state. The thermopower below this transi­

tion becomes large and negative, but the very strong tempera­

ture dependence and the high sample resistance make detailed 

analysis impossible.; 

The remaining four compounds behave very similar, best seen 

in the S versus l/T plot (Fig. 8 .14) . All exhibit phase tran­

sitions well below 20K, showing up in the TEP plot as very 

sharp anomalies to larger s-values. A few degrees above Tc a 

slight lowering in Sis observed in the PF6 , AsF
6

- and SbF6 
compounds. Below T , all compounds are seen to be semiconduc-

c 
ting, as they follow the form (6.12) 

s = s 
0 

( 8. 25) 

The constant S is in all four materials of the order of 30 µV/K, 
0 

and the effective activation energy, ~' range from 0.1 meV 

for (TMTSF) 2-No 3 to 0.2 meV for AsF6 . In (TMTSF) 2-No 3 an addi­

tional anomaly appears at 45K. It gives rise to a decrease in 

TEP with lowered temperature, and an S-shape curve in the con­

ductivity. This anomaly could arise from freezing of the No 3 
ions, but it is not clear what effect dynamic disorder of the 

anions may have on the transport properties. 
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8.5 THERMOPOWER OF (TMTTF) 2-PF 6 

Crystals of (TMTTF)
2

-PF6 were prepared like those of the sele­

nium analogues, discussed above. The crystals are brittle and 

of typical size 2x0.2xO.l mm3 . Our transport studies are only pre­

liminary, and much more work is needed to fylly characterize this 

compound. The French group in Talence, Delhaes et al. jl58j has 

done some studies on (TMTTF) 2-PF 6 , but their transport work 

were only concerning conductivity in the region 180K-300K. More 

detailed studies were done on the compounds (TMTTF) 2-x, X = c104 , 

BF 4 and Br . 

~ 
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Fig. 8.15 Normalized conduc­
tivity versus tem~erature 
for (TMTTF)2-PF6 11501 

Delhaes et al. jl58j found by chemical analysis a stoichiome­

try of 2:1. X-ray studies of the Br- salt showed a triclinic 

structure, but the TMTTF units are not symmetrically equivalent. 

The PF 6 salt is probably similar, i.e. with dimerized TMTTF 

stacks. Thus the electronic bands are 1/2 filled, rather than 

the 3/4 filled bands in the symmetric case. We do, however, 

wish to point out that such a weak dimerization is only expect­

ed to influence the transport properties at very low tempera­

ture, where thermal motion is less important. 

The conductivity of (TMTTF) 2-PF 6 is shown in Fig. 8 .15 I 1581 . 

The room-temperature value is typically 20 (Qcm) -l, which places 

the system in a transport region of diffusion or activated hop­

ping, rather than the band like conductivity observed in the 
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selenium analogue. At T = 245K, a(T) reaches a maximum value 

of l.lxa(300K), and below 245K a(T)decreases moderately. The 

two (TMTTF)
2
-x salts formed with BF 4 and c104 exhibit MI 

phasetransitions at 41K and 70K respectively. In ref. 3 they 

were identified as Peierls transitions. The PF6 salt will pro­

bably also show a transition, when going to sufficiently low 

temperatures. 

Based on optical and paramagnetic susceptibility data, Delhaes 

et al. remarked that electron-electron interactions are not 

negligible in the (TMTTF) 2-x compounds. 

In Fig. 8.16 we show the thermopower of (TMTTF) 2-PF6 . The posi­

tive TEP is in agreement with our expectation for conduction by 

a donor chain. The temperature dependence clearly corroborate 

the non band-like transport mechanism, and the possibility of 

strong intrasite Coulomb correlation. As best seen in the l/T­

plot, the S (T) falls into three regions: ~ T > 125K, £, 
125K > T > 66K and £, T < 66K. In all three regions, S exhibits 

more or less semiconducting properties 

s = s 
0 

but more independent experimental data are necessary for a detail­

ed analysis. However, we wish to point out that the intermediate 

region has exactly the properties expected for a highly corre­

lated semiconductor. The asymptotical high temperature thermo­

power is just S
0 

= kB/e·ln2 (see chapter 6). The properties 

above 125K are not yet understood, but the transition could be 

from essentially no dimerization to effectively dimerized donor 

stacks. The transition at 66K is attributed to the Peierls in­

stability, but X-ray experiments have not been done to confirm 

this. 

8.6 THERMOPOWER OF HMTSF-TNAP 

The HMTSF-TNAP crystals (see Fig. 8.17) were prepared by slow 

cooling of a nitrobenzene solution of the purified constituents 

11601. Typical samples had dimensions of 2xo.2xo.4 mm3 , and 

exhibited a green shine in reflected light. The TNAP molecule 

differs from TCNQ in several aspects from its size and synunetry. 

This should change the intra-stack overlap and the possible 
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Fig. 8.17 Molecular constituents. 

first order coupling between electrons and molecular vibrations. 

The donor and acceptor stacks are arranged in alternating rows 

161 . 

In Fig. 8.18 we show the temperature dependence of the norma­

lized conductivity r160j. Room temperature conductivity is in 

the range 1800-3000 (ncm)-1 . A well defined maximum occur near 

T =47K with a /cr(300K) = 6. Below approximately 35K, a max max 
pronounced sample dependent cr(T)/cr(300K)-ratio is found. In 

Fig. 8.18 we also show the conductivities of HMTSF-TCNQ l49J 

and TMTSF-TCNQ j29j, the first because the low temperature be~ 

haviour is similar and TMTSF-TCNQ because its crystal structure 

11481 is qualitative similar to that of HMTSF-TNAP. The aniso­

tropy of HMTSF-TNAP is for both directions perpendicular to 

the highly conducting direction of order 100, at 300K. 

In Fig. 8.19 the thermopower is shown versus temperature. Above 

200K~ S is approximately linear in T, and reaches at room tem­

perature a small, positive value of 7 µV/K. Qualitatively this 

behaviour is similar to all other selenium derivatives of TTF­

TCNQ, e.g. HMTSF-TCNQ I 49 I and TMTSF-TCNQ j 29 I, and indicative 

of simple band conduction, dominated by the donor stack. 

Below 200K we observe a residual TEP, increasing as the tempera­

ture is decreased. This could be due to phonon drag, which in 
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3D systems is known to give a ~S proportional to l/T (see chap­

ter 5 ) . However, a similar S(T) behaviour was seen in the com­

pounds DEDMTSF-TCNQ and TMTSF-DMTCNQ0.75MTCNQ0.2s· In these 

systems, the ~S was attributed to disorder effects. This could 

mean that HMTSF-TNAP is influenced by disorder below 200K. The 

large sample dependent low-temperature conductivity support 

this view. However, the large ~S can also be a result of the 

relative large interstack interaction, due to the samll Se-N 

distance Jl61]. This interaction may give rise to opening of 

gaps on parts of the Fermi surface, resulting in a semimetallic 

state, as known from HMTSF-TCNQ 143]. 

At 33K, a sharp change in the S(T) slope suggests a Metal-Insu­

lator transition. This is just the temperature where the con­

ductivity shows strong sample dependence, so a gap at the Fermi­

surface may open here. The MI transition is presumably a Peierls 

transition ]86]. Below Tc the TEP decreases rapidly, but S re­

mains small down to at least 2K. This may suggest that the 

Peierls gap destroys only part of the Fermi surface, hence the 

material becomes semimetallic. 

The thermopower becomes negative below 17K, and reach a maximum 

in magnitude around lOK (Fig. 8.20b). The values of S below 

T = 4K are somewhat uncertain, as S is of the same magnitude as 

that of the reference material, Au, which on the other hand is 

extremely impurity dependent in this region. The TEP behaviour 

could suggest that HMTSF-TNAP is under influence of magnetic 

impurities, giving rise to a Kondo effect, showing up as a peak 

in the S(T) curve (see chapter 4.10). Support for this interpre­

tation of the low-temperature TEP is the measurements of static 

magnetic susceptibility which indicate a certain amount of para-

magnetic impurities ]160]. Also the conductivity can be 

shown to follow a logarithmic temperature behaviour, charac­

teristic for the Kondo effect. Such a fit to a(T) has been done 

for HMTSF-TNCQ I 162], which behaves very similar to HMTSF-TNAP 

below T . 
c 



T ( K) 

100 50 40 30 25 20 15 10 
II I I I I T t I I I I "T 

HMTSF-TNAP 

101.. 

•• . . ·, "' . ~ \ 

! \ 
~ . 
~ \ ~ . 
~ \ I 
t-

---- ·, -· 
• • 

0 ' ----·........ ~· ......... .__ ____ _ 

0 .10 .15 .05 
I/T ( K-1 ) 

~ 
/ 
> 
:::i. 

Ck: 
w 
~ 
~ 
0 
~ 
Ck: 
w 
I 
t-

TEMPERATURE ( K ) 
20 10 5 4 3 2 1.5 

HMTSF-TNAP 
10 

OI ' ~~ I 

-5------~-----------------------~----"--~ 0 .1 .2 .3 .4 . 5 .6 . 7 .8 
I/T ( K-1) 

Fig. 8.20 Thermopower versus l/T for HMTSF-TNAP. 

~ 
U1 
ii::. 



- 155 -

8.7 THERMOPOWER OF TTTF-TCNQ and METTTF-TCNQ 

TTTF METTTF 

Fig. 8.21 Molecular design. 

Crystals of 'ITI'F-TCNQ and METTTF-TCNQ were prepared by the Mont­

pellier group jl63j. Both crystal structures are known 11641. 

The symmetry is monoclinic with regular segregated stacks of 

donors and acceptors. TCNQ-ions and cations of two adjacent 

chains are either nearly parallel (TTTF) or strongly tilted 

(METTTF). Thus the molecular orbital overlapping between donor 

and acceptor is expected to be more important for the first than 

for the second one. 

Table 5 

Transport properties of TTTF-TCNQ and METTTF-TCNQ 

TTTF 

METTTF 

a (300K) 

-1 
. (S1cm) 

400 

80 

a /a max RT 

2.7 

1.8 

T max 

(K) 

120 

165 

S(300K) 

(µV /K) 

-7 

-5.5 

T c 

(K) meV 

81 5.1 

95 0.7 

In Fig. 8.22 we show the normalized conductivities. Room-tempe­

rature values are for i"ll:."l"rr~· -TCNQ about 90 (S1cm) -l and for TTTF­

TCNQ in the range 200-400 (ncm)-1 . A broad maximum of a is obser­

ved at about 165K and 120K, respectively, and the maximum in 

slope of log a versus l/T indicates phase transitions at 95K for 

the former and 81K for the latter compound. 
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In Fig. 8.23 the thermopower of the two compounds is shown. 

Both materials show small negative values at room temperature, 

SRT(TTTF-TCNQ) = -7 µV/K and SRT (METTTF-TCNQ) = -5.5 µV/K. 

The rather small magnitude of S suggests that both kind of 

stacks contribute comparably to the electrical transport. This 

also explains the high T temperature dependence: Since the mag­

nitude of the intrinsic TEP corresponding to the individual 

stacks probably is large compared to the resulting one, only a 

small change in the oA/a0 -ratio may give r~se to relatively 

large changes in s. A similar S(T) behaviour is found in 

TMTTF-TCNQ, shown in Fig. 8.5. 

Both of the compounds exhibit a change in slope of S(T) near 

the transition temperature (Tc). Below Tc the materials are 

semiconducting, with the effective activation energies: ~(TTTF­

TCNQ) = 5.1 meV and ~(METTTF-TCNQ) = 0.7 meV. Below 60K the 

materials indicate strong impurity dependence in S. 

8.8 THERMOPOWER OF DBTTF-TCNQC12 

Dibenzo-TTF-dichloro-TCNQ (DBTTF-TCNQC1 2 ) crystals were prepared 

at the 0rsted Institute by diffusive crystallization in an in­

verted U-tube jl65j. The samples obtained were black needles of 

good quality and of typical size 2xo.2xo.02 mm2 Chemically, 

DBTTF-TCNQC1 2 is analogous to TTF-TCNQ, namely a 1:1 donor-ac­

ceptor compound, and also the triclinic crystal structure con­

sisting of uniform stacks is qualitatively similar jl66j. The 

molecular design is shown in Fig. 8.24. 
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Fig. 8.24 Constituent molecules 

The substitution of chlorines for hydrogens in the acceptor 

stack gives rise to both steric and electronic changes llll. 

The transport data given below indicate an essential reduction 

of the bandwidth. The overlap of the DBTTF molecules are, on the 

other hand, very similar to that in TTF-TCNQ. 
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The temperature dependent conductivity is shown in Fig. 8.25. 

The room-temperature value is approximately 40 (Qcm)- 1 , and a 

rises by cooling a few percent to a broad maximum around 260K. 

Below 260K a falls off, and a maximum in the slope of lna versus 

l/T indicates a phase transition at Tc = 180K. Below Tc a simple 

activated conductivity is observed with E = 64 meV. The aniso-a 
tropy is large, about 400 (35 GHz) at room temperature, and in-

creases with decreasing temperature. 

The thermopower of DBTTF-TCNQC1 2 is shown in Fig. 8.26. At 400K 

the TEP is 9µV/K, and S increases with decreasing temperature. 

Thus, DBTTF-TCNQC1 2 is not described simple by metallic bandpicture, 

which should show a TEP linear in T. This is further corroborat-

ed by the absolute value of the conductivity, which corresponds 

to a mean free path of order 1/10-1/20 lattice constant. In the 

plot of S versus l/T in Fig. 8.26, two regimes can be identified, 

above and below 180K. Both regimes exhibit the semiconducting 

property, given in the form 

s = s 
0 

kB 6 
+ ~ 

ekBT 

with the effective activation energies 6(1 > 180K) ~ 14 meV and 

6(T < 180K) ~ 40 meV. Both 6's are smaller than the activation 

energy Ea determined from conductivity. Below lOOK, deviations 

from l/T behaviour are found. The curvature is somewhat sample 

dependent, suggesting extrinsic domination. Also the conductivi­

ty is somewhat sample dependent below lOOK. 

The high-temperature variation of S could in principle arise 

from a metallic band behaviour. The S - l/T property should then 

result from the individual stack conductivities being of diffe­

rent temperature dependence. The positive sign of S thus sug­

gests that the donor stacks become more dominating in transport 

as the temperature is lowered. 

In order to confirm this simple metallic model, investigations 

on doped compounds of DBTTF-TCNQC1 2 should be done. By reasonable 

doping, the conductivity of a single type of stacks may be seve­

rely limited, thus leaving the macroscopic transport behaviour 

close to the intrinsic of the undoped stacks. 
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Another and more likely explanation for the high temperature 

S ~ l/T behaviour is given in a semiconducting picture. The 

electronic band gap need not be real, but could arise from 

fluctuations into the low temperature non-conducting state. The 

conductivity should in this picture be understood in view of 

an activated carrier density plus the strongly temperature 

dependent mobility known from the discussions in chapter 4 

(see also ref. 116). 

At 180K a phase transition into a semiconducting low temperature 

state is found in both the a and S behaviour. The paramagnetic 

susceptibility, however, does not exhibit any changes ll65j. 

Thus the transition is not due to the Peierls mechanism. In­

stead we suggest that the carriers becpme localized because 

of strong on-site Coulomb repulsion, corresponding to a 4kF 

transition. 
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CHAPTER IX 

SUMMARY AND CONCLUSIONS 

The experimental thermoelectric data shown in chapter VIII 

show several common properties. Generally the coherent conduc-

ting compoundshave a linear S versus T dependence above the pha-

se transition. It should be noticed, though, that many of these 

highly conducting compounds has a change in the S versus T slope 

around 100-lSOK. This change is especially~ abrupt in TMTSF-DMTCNQ, 

but is also clearly marked in the other TMTSF-compounds investigated. 

In 8.2 it was discussed whether the S(T) behaviour at 140K in 

'IMTSF-DMTCNQ is related to a 4kF-anomaly. However, no 4kF-scat­

tering is seen in the other TMTSF-compounds, and other explana­

tions should therefore be investigated. Since several TMTSF-

sal ts have shown superconductivity jl67,168I, an attractive ex­

planation would be based on superconducting fluctuations. Fluc­

tuations into superconducting behaviour will result in a reduced 

thermopower, just as it is seen. However, more detailed studies 

of independent parameters must be done to clarify this. In com­

pounds which are known to be influenced by impurities or disor-

der, a non-linear S(T) behaviour appears in the same temperature 

region. Another explanation of the 100-lSOK anomalies in the 

thermopower would therefore be a change in the scattering me­

chanism involved. In TTF-TCNQ the change in the S(T) slope is 

very smooth, and is most probably resulting from fluctuations 

into the insulating Peierls state. 

The materials of low conductivity show a thermoelectric power 

that is either activated, S - l/T, or large and temperature-in­

dependent. The former behaviour is due to semiconducting band­

carriers, whereas the latter is for carriers in localized sta­

tes. 

Thus, the thermopower is a very good indicator of the proper­

ties of the charge-carriers and the related conduction mechanism, 

namely whether the conduction is coherent, activated or due to 

hopping between locali~ed states. The conductivity in its own 

is less informative, since the carrier concentration, if acti­

vated as well as the mobility (see chapter IV) may be distinctly 
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temperature dependent. Furthermore the conductivity is very sen­

sitive to breaks in the chains as opposed to the thermopower. 

From the discussions in chapter IV concerning the scattering 

mechanism in highly conducting organic compounds, it is still 

not clear which mechanism, if any particular, dominates. It 

appears from the discussion that the problem is even more com­

plicated as a result of the relatively large compressibility 

of organic materials. None of the analysis in chapter IV, how­

ever, refute scattering due to interaction with acoustic modes 

to be the most important one, as it is in classical metals. 

Assuming this to be the case, measurements of the thermopower 

gives valuable information of the bandwidth, charge transfer 

and Fermi-energy. Typical bandwidths for the highly conducting 

compounds are between 0.5 eV and 1.5 eV. For the low-temperature 

semiconducting state, the thermopowerindicates that the conduc­

tion is mainly due to impurities. 

Finally it has been shown that from systematic studies of ther­

mopower and conductivity, it is possible to deduce intrinsic 

transport parameters above T of a single stack. c 
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